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1 What do we know about QCD? 

In this review we will address the high energy or small xg behavior of parton 
densities and hopefully demonstrate that this is a problem that is one of the 
principle and most difficult problems of &CD. It should be solved before QCD 
can truly be considered to be the only serious candidate for a theory of strong 
interactions at high energy. 

In perturbative QCD only the periphery of this problem can be explored; 
its kernel is nonperturbative. That is to say, at xg + 0 we deal with a dense 
system of partons, either in the initial or in the final state, in the weak coupling 
limit in which the aggregate interaction between partons becomes strong due to 
the large density of partons even though the coupling constant cr, is small. The 
theoretical understanding of such a system of partons, which will be probed 
experimentally at the new generation of accelerators (HERA, LHC, RHIC), is 
relevant to issues as diverse as the small x behavior of deep-inelastic structure 
functions, the structure of a typical inelastic event produced at high energy 
hadron-hadron or ion-ion collisions, the understanding of nuclear shadowing 
and the problem of baryon number nonconservation in electroweak theory at 
high energies. 

Fortunately, at the time of writing we have the first experimental results 
from HERA, so we can adjust theoretical imagination to data. However the key 
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problems are still in developing new theoretical methods to study the small xg 
behavior of parton densities. Thus we will discuss mainly the theoretical prob- 
lems encountered in opening up the frontier region of small x in perturbative 
&CD. We will also consider new ideas on how to approach the nonperturbative 
regime of the deep-inelastic structure functions. 

This reviews focusses on the physical problems that we face in the region 
of small Xg and on the principal ideas about how to approach them in this 
new kinematical region, rather than on the theoretical scrutiny of these ideas. 
Some familiarity with the parton model will facilitate the reading of this review, 
although we tried to be as self-contained as possible. The preprint version of 
this review is somewhat more expansive than the published version: section 
4.5 is expanded and 6.6 has been added. Our hope is to draw the attention 
of a large part of the physics community, and not only experts in high energy 
physics to this unique opportunity to create and study a new system of quark 
and gluons, the quark - gluon liquid as the source of a typical inelastic event 
at the new generation of accelerators. 

1.1 What is QCD ? 

To make clear the origin of both QCD and our belief that QCD is the true 
theory of strong interaction, let us review the main lessons we learned from 
experiments that taught us what this theory should be. In other words, using 
hindsight, we would like to infer the QCD lagrangian from data. 

1. In 1964 Gell-Mann and Zweig suggested the quark model [l] in order 
to describe the spectrum of observed hadrons, which it still does very well. 
They introduced three very curious particles, quarks (u,d,s), having fractional 
electrical charge and baryonic quantum number (see e.g. Table 10.1 in [3]). 
With these they reduced the veritable zoo of hadrons to simple combinations 
of these quarks (and antiquarks), mesons consisting of quark-antiquark pairs, 
and baryons of three quarks. The first lesson for the future theory was that its 
building blocks should be these few quarks, and not the plethora of hadrons. 

2. In the next several years the necessity to enlarge the number of quarks 
was realized. Indeed, there are hadrons that consist of identical quarks (e.g. 
the A++-hyperon, which consists of three u quarks). Due to the Pauli- princi- 
ple one cannot build such baryons from quarks with a symmetrical coordinate 
wavefunction. However, it is impossible to have an antisymmetrical wavefunc- 
tion for the lightest hadrons or in other words, for the multiquark state with 
the minimum energy. The only resolution to this puzzle was to increase the 
number of quarks by introducing a new quantum number, color[2]. One needs 
three colors for each quark flavor to describe the spectrum of baryons. E.g. 
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the A++-hyperon consists of three differently colored u-quarks. So the second 
lesson from the spectrum of hadrons was that quarks are colored. 

3. Attempts to find free quarks failed. Thus, one needed to build a theory 
that provides forces sufficiently strong at large distances to prevent quarks from 
existing outside of hadrons. For a relativistic theory we know that the only 
way to incorporate such a force is to assume that there is a particle with zero 
mass which mediates this force. Thus the third lesson was that there must a 
new particle. It was called gluon. 

4. Unlike the photon in QED, the gluon could not be neutral with respect 
to the new color quantum number. In the QED-like caSe the potential energy 
in the Born approximation is equal to 

v. nj+i'j' = !y($)($(jj') , (1) 

where i, j(i’,j’) are the colors of initial (final ) quarks and R is the distance 
between quarks. Since the color of the antiquark has a sign opposite to that 
of the quark, it is easy to understand that the average V for mesons must be 
negative ((MI V IM) < 0 ), h’l f w I e or a baryon the average V is still positive 
((I31 V II?) > 0). Th us a theory with a neutral gluon had no chance to describe 
the spectrum of hadrons. The only way to construct a theory of quarks (anti- 
quarks) and gluons is to assume that gluons also carry color. As far as their 
color properties are concerned, we can imagine each gluon as a quark-antiquark 
pair. In this case we can rewrite es.(l) in the form 

Kj+iJ j' = [ j$5("")6(jj') + &')6(ji')] ; . 

Eq.(2) provides negative V for both mesons and baryons ((MI V IM) < 0 ; 
(B] V ]B) < 0). So the fourth lesson was that giuons are also colored. 

5. Now we are almost ready to write down the lagrangian of our theory. The 
only additional idea that we should incorporate is gauge invariance. It ensures 
the masslessness of the gluon to all orders in perturbation theory, which is 
necessary for confinement. Thus we arrive at the fifth lesson, namely that the 
theory should be gauge invariant. 

Already in 1954 Yang and Mills wrote down the lagrangian of a theory 
with all the above properties [4]. Using their result Fritzsch, Gell-Mann and 
Leutwyler (51 suggested the following lagrangian’ : 

L = xli;,[iD(A) - m/]$, - aF*(A) , (3) 
f 

‘The full quantum lagrangian of can be found e.g. in the Handbook of Perturbative QCD 
written by the CTEQ Collaboration [S], the part that is written here, the classical action. 
sul3kes to understand small z interactions. 



where the index f runs of the quark flavors (u, d,s,. .), and the covariant deriva- 
tive D and the gluon field strength F are defined in terms of the gluon vector 
field At as follows: 

Dp,ij(A) = apa, + igA,,(Ta)ij ; (4) 
F WV4 = &A,4 - &A,, - gCaaA,dvc . (5) 

Indices p and Y refer to spacetime coordinates and i, j and a, b, c refer to the 
color of quarks and gluons (for details see ref.[6]). 

The lagrangian of eq.(3) generates the interaction between quarks and glu- 
ons as well as the gluon self-interaction, see Fig.1. The former looks very similar 
to the interaction in QED while the latter is the manifestation of the fact that 
gluon carries the color quantum number. It is a distinctive feature of &CD, 
and is especially important for the small Xg behavior of parton densities, as 
will become clear further on. 

Figure 1: The interaction between quarks (q) and gluons (G) 
generated by the QCD Lagrangian of eq.(3). 

1.2 Basics of QCD. 

Having hopefully convinced the reader in the first subsection that QCD is the 
theory one obtains by examining experimental data, we will now discuss the 
feedback, i.e. the predictions of QCD that have been checked experimentally. 
1. Asymptotic freedom. 

The first and the greatest prediction was asymptotic freedom. This is the 
fact that the coupling constant of QCD crs(l/r2) becomes small at short dis- 
tances [7] (the exact opposite behavior occurs in QED, as first shown by Landau 

PI) 
us($) = 

4lr a&*) 

b InA 
= 

1 + o,(p*)&ln& ’ 
(6) 

VP 

where b = 11 - $nf and nf is the number of quarks (here the number of 
colors (NC) is equal 3). The scale p is the renormalization scale. 

To understand the importance of this result it is enough to mention that the 
whole of perturbation theory is based on this remarkable property, and on the 
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existence of a factorization theorem, to be discussed momentarily. Asymptotic 
freedom has been checked experimentally, as is shown convincingly in Fig.2. 

Figure 2: The running of the QCD coupling constant. 
The various symbols correspond to different experiments 
used to meanire QS. 

2. &CD bremsstrahhng. 
A striking result from e+e- colliders during the last two decades (especially 

from LEP) is that the QCD bremsstrahlung of massless gluons describes quite 
well the hadron distribution in a jet (see ref.[13] e.g.). The study of isolated 
jets however is no longer a prerogative of e+e- collision experiments but has 
become standard staple also for hadron colliders (see ref.[ll]). Let us list some 
of the main properties of QCD for jet decay, which have been confirmed exper- 
imentally. 

1. Produced hadrons exist in several clearly separated angular clusters, 
which are moreover well mimicked by distributions of massless gluons typical 
for bremsstrahlung processes. 

2. Ratios of cross sections for different numbers of jets in the final state 
coincide with the corresponding pQCD calculation, assuming that each jet is 
the result of decay of a produced parton (quark or gluon). Both the ALEPH 
and DELPHI collaborations at LEP have measured the ratio of four- to three 
jet production (w ), which effectively measures the value of the triple 
gluon vertex (see Fig.l), and found that its value agrees with the QCD predic- 
tion [15]. This experimental fact then is a direct observation that gluons carry 
the color charge. 

3. The hump-backed form of the inclusive cross section in e+e- annihilation, 
indicative of coherence effects in jet decays and predicted in QCD (see ref.[16]) 
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has been established quite well by now. Other manifestations of coherence have 
been predicted and measured [13][14]. 
3. Factorizatiofl. 

The factorization theorem [17] is the basis of all applications of perturbative 
QCD to so-called hard processes with hadrons in the initial state. To be able to 

apply it one needs the presence of a large scale in the process. Let us, following 
the CTEQ handbook [6], illustrate this theorem using the simple example of 
high pt (the large scale) single hadron inclusive production in hadron - hadron 
collisions A + B(PB) + C(pc) + X. The factorization theorem reads 

dx,ddxb$#J.,,&., P)~b/B(xbv P)~~~k$&j~ CL)&&, CL) 
c 

(7) 
where all notation is clear from Fig.3. Here p is the factorization scale, which, 
although arbitrary, is in practical csses best chosen near the relevant large 
scale of the process in order to avoid the occurrence of large logarithms in the 
perturbative expansion for d8/d3k,. 

F 

Figure 3. The factorization theo- 
rem, eq.(7), for single particle inclu- 
sive hadron production at large Pt. 
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Figure 4. The map of QCD. p is 
the density of partons (gluons) in 
the transverse plane (see eq.(6)) and 
r is the distance resolved by an ex- 
periment. 

The physical meaning of the factorization theorem is easily understood (un- 
like the proof [17]): it factorizes the scattering process into three stages: 

1. The probability of the reaction is equal to the product of the probabilities 
to find partons a and b inside the hadrons A and B, i.e. the product of the two 
parton densities* &,A and #b/B in eq.( 7). These parton densities should be 

. 

*The parton densities @o/A are also commonly referred to as parton distribution functions. 



measured in another reaction at a certain scale. For other values of p they can 
then be determined via the GLAP evolution equation, to be discussed later. 

2. A hard production process involving the parton with large transverse 
momentum (kt, in eq.( 7)). This process occurs at a short distance R, where 
+ZR<<& and can be systematically calculated order by order in perturba- 
tion theory. 

3. In the final state the probability to find hadron C is given by the frag- 
mentation function that describes the decay of parton c to many hadrons among 
which is hadron C. 

The factorization formula has been checked experimentally; the most im- 
pressive result came from CDF (see review [14] e.g., and [27]) where the one 
jet inclusive cross section with large transverse momentum was measured. The 
factorization theorem was able to describe the experimental data in a kinemat- 
ical region where the value of cross section falls over seven orders of magnitude 
within an accuracy of 10 -20 %. 

1.3 The map of QCD. 

Having described the basic features of &CD, we will start to answer in this 
subsection the following questions: (i) What we have learned about QCD; (ii) 
What problems are still unsolved in QCD.?; (iii) Can we relate the kinematical 
region in which we have to face these unsolved problems to collision processes? 

Fig.4 displays the ‘map of &CD’. Shown are three separate regions, distin- 
guished by the size of the variables Q* and x, which will be defined momentarily. 
Each region corresponds to quite different physics and enjoys a different level 
of understanding. Before we discuss these three regions in more detail let us 
introduce the necessary notational conventions and definitions. 

In Fig.4 r is the distance that can be resolved by the scattering process under 
consideration. From the uncertainty principle this distance is of the order of 
6 where Q is the typical large transverse momentum in our experiment. E.g. 
in deeply inelastic electron scattering Q is the transverse momentum of the 
recoiled electron. We recall that deeply inelastic scattering is the reaction: 

e + p + e’ + anything. 

Thus. this reaction acts as a powerful microscope which is able to resolve the 
constituents of a hadron (quarks, antiquarks and gluons, collectively called 
partons) with a transverse size of the order of 6. The second kinematical 
variable that we can introduce for such constituents is the fraction of energy 
(x) that a parton carries with respect to the parent hadron. If N(x,Q*)dx is 
the number of gluons in a small x-interval centered around the value x at scale 
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Q* 3, the gluon density xG(x, Q*) tells us what the gluon density at a definite 
value of In $ is, 

dN(x, &*I 
xGb,Q*) = I dlnl I n 

a! 

Let us for convenience introduce the transverse density of gluons p, 

xG(x, &*I 
dx,Q*) = nR2 

where R is the radius of the hadron. We plot this on the vertical axis in Fig.4. 
In this figure we can see three different regions: 

1. The region of small p at small distances r (low density (pQCD) r-e- 
@on). This is the region where we can apply the powerful methods of per- 
turbative QCD since the value of running coupling constant cy*(l/r*) is small 
Ml/~*> -SE 1 1. 

2. The region of large distances ( npQCD region ). Here we have to deal with 
the confinement problems of &CD, since cr,( l/r*) >> 1. In this kinematical 
region we need to use nonperturbative methods. 

3 The region of small distances but high par-ton density (hdQCD region). 
This is our region of interest, since here we have a unique situation when the 

coupling constant aS(r2) is still small but the density is so large that we cannot 
use the usual methods of perturbation theory. We have to think of something 
new in order to study this kinematical region. Already at this point we would 
like to point out that we can treat this region by approaching it from the low 
density pQCD region. The description of the methods developed to study this 
border region and the new physical phenomena that we anticipate there, are the 
main subjects of this review. Let us now examine each of these three regions 
in some more detail. 

1.4 The low density (pQCD) region. 

This is the region of small distance physics (corresponding to large values of 
transferred momentum Q* in processes such as deep inelastic scattering) and 
moderately small values of x. This is the workplace that the machinery of 
perturbative QCD described earlier was designed for. The physics for these 
so-called hard processes has some typical properties: 

1. The cross section (e.g. for virtual photon absorption in deep inelastic 
scattering) is very small, a(r*N) << crcSm. . nRi where lrRE, is a typical area 

‘We will show later that the number of gluons increases in the region of small 2. All physics 
in this kinematical region is strongly connected to this fact. It is the reason we concentrate 
on the discussion of the giuon density here 
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of the hadron. It decrease as the inverse power of Q2 at large values of Q2 
WY’W a $A. 

2. For these hard processes we have available a transparent physics language 
to discuss the relevant physics, viz. the parton language, which was especially 
conceived for these processes. 

3. In this region, at truly large Q2, one can apply the leading log approxi- 
mation (LLA) of perturbative &CD. 

Except at the Tevatron and HERA, all experiments checked mainly this 
kinematical region. In summary, one can say that the basics of QCD have been 
studied and confirmed experimentally during the last twenty years. 

1.5 Nonperturbative QCD (npQCD) region. 

In the kinematical region without a hard scale we also know a lot about &CD, 
mostly because of computer lattice calculations. This is perhaps the cheapest 
way to study the main properties of confinement of quarks and gluons start- 
ing directly from the QCD lagrangian. The success of this approach is quite 
remarkable. Lattice QCD is able to describe the spectrum of observed hadrons 
with an accuracy compatible with the experimental data (see the review of 
A.S. Kronfeld and P.B.Mackenzie [18] for a detailed discussion of all relevant 
problems). Unfortunately, at the moment lattice QCD cannot yet be applied 
to scattering processes. The same is true for another method which is not as 
general as the lattice approach but works for a large variety of processes in first 
approximation, the QCD sum rules [19]. They are roughly able to describe 
the property of confinement but this method uses the additional assumption 
that vacuum expectations of all operators are smaller in appropriate units than 
the typical hadronic scale (which is not always obvious). In spite of all these 
difficulties the situation in this kinematical region is not as bad as in the high 
density region of &CD. 

1.6 High density QCD (hdQCD). 

Here we are dealing with a system of partons still at short distances where the 
coupling constant of QCD a, is small but in which the density of partons has 
become so large that we cannot apply the usual methods of pQCD. In essence 
the theoretical problem here is also a nonperturbative one but the origin of 
the nonperturbative effects here is quite different from that in the previous 
subsection. Here we face the situation where we have to develop new methods 
that let us deal with a dense relativistic system of gluons in a nonequilibrium 
state. Unfortunately we are only at the beginning of this road. 
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The best approach to this region is from the pQCD one. In some transition 
region on the border of the pQCD and hdQCD regions we can study this re- 
markable system of partons in great detail. To illustrate what new physics we 
can expect in this transition region let us consider deeply inelastic scattering in 
both regions. This we already did for the pQCD region in subsection 1.3. 

In the transition region the situation changes crucially. First, the total cross 
section a(r*N) becomes large and, near the border with the so-called Regge 
domain, even compatible with the geometrical size of the hadron at small z, 
i.e. U(r’N) -+ cr,,,. . nRi. In this kinematical region it depends only on lnQ2, 
that is a(+y*N) a F(lnQ2). S econd, the par-ton language can be used to discuss 
the main properties of this process but interactions between partons besides the 
ones due to the hard interaction, become important. This interaction induces 
substantial screening (a.k.a. shadowing) corrections. However, in this transition 
region the screening corrections are under some theoretical control. For this 
we must go beyond the usual linear evolution equation; the correct evolution 
equation becomes nonlinear. This we discuss in section 4. Next we consider 
how to experimentally access this transition region. 

1.7 How to penetrate the high density QCD region. 

Access to this interesting kinematical region is actually easily achieved in our 
scattering processes. We know at least three ways to prepare a large density 
system of partons. The first is given by nature, which supplies us with large 
and heavy nucleii. In ion-ion collisions we can already reach a very high density 
of partons at not so high energies, because the partons from different nucleons 
in a nucleus are freed. The second relates to hard processes in hadron-hadron 
collisions or in deep inelastic scattering. These also give us access to a high 
density of partons because we expect a substantial increase in the parton density 
in the region of small Bjorken z. Of course one can use hard processes in ion- 
ion collisions to utilize both effects: increase of gluon density combined with 
a large number of nucieons in a target. We will discuss these expectations in 
the next section. Let us remark that already the first experimental data from 
HERA [20] h s ow that there are as many as 50 gluons in a proton at z = 10e4. 
Yet another way to prepare a high par-ton density system is to select high 
multiplicity events in hadronic collisions. In the next section we will identify 
new physical phenomena which we expect to arise at small sg. 

12 



2 New physical phenomena at small zg: 

Let us outline the new phenomena which we anticipate to occur in the region 
of small zg in perturbative QCD for the case of deeply inelastic scattering. 
Three of them are particularly important and determine the physical picture of 
the parton evolution, or cascade as we shall call it, in the region of small 58, 
namely: 

. 

1. The increase of the parton density [21] at zg + 0. 
2. The growth of the mean transverse momentum of a parton inside the 

parton cascade at low xg [21] [23]. 
3. The saturation of the parton density [23]. 
Before discussing each of these phenomena in turn, let us try to understand 

these new phenomena at small xg by recalling some facts regarding pertur- 
bation theory and deeply inelastic scattering. According to the factorization 
theorem, the deep-inelastic structure function is a product of a parton density 
and a short distance coefficient function, which is calculable in perturbation 
theory. Both factors depend on the factorization scale, which we choose equal 
to Q*. Concentrating on the giuon density, in the kinematical region we are 
considering the former can be represented as 

xG(x,Q*) = CnCn(Q;)(a,L)” + O(as(a,L)“) 1 (9) 

where L is the large logarithm in our problem. The coefficients C,(Q$ contain 
nonperturbative information and depend on the initial scale Qz of the cascade. 
see Fig.5, 

a,=r: q&j 

441, ” <;x+{~ 
+=Qo.Qo x1 

1 
*< . . . . , <e, 

Figure 5: The basic branching process in deep-inelastic scat- 
tering. 

To see what kind of large logarithm could occur, one can examine the probability 
of emission P; of the i-th parton in the cascade. Near x = 0 it can be written 
as 

Pi 
Nca, dxi dq:t =-.m.- 

7r Xi Clft 
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1. In the region of large virtualities of the photon in deep inelastic scattering 
(but not at very small values of 28) L is equal to InQ*. 

2. At Q* fixed (Q* 2: Qi > m&,,,, ) but at small value of xg we have a 
different large logarithm in eq.(2), namely L = In &. 

3. When both lnQ* and In & are large (Q* >> Q,’ XB + 0) the large 
logarithm has a more complicated form, namely L = lnQ* In $. In this case 
one can apply the so-called double logarithmic approximation (DLA) of pQCD. 
The objective now is to resum these large logarithms in eq.(9), so that we can 
estimate the behavior of the parton densities in the corresponding kinematical 
regimes. This resummation is performed via evolution equations, which differ 
depending on the type of large logarithm under consideration. 

2.1 Increase of the gluon (quark) density at 58 + 0. 

We now investigate the new phenomena at small xg, but begin by discussing 
the evolution equations that sum particular classes of large logarithms in the 
parton densities. 

4 r.lnd 

Figure 6. The parton distribution in 
the transverse plane. 

Gribov - Lipatov - Altadi - Pariai (GLAP) evolution equation. 
The GLAP equation sums those contributions in the parton cascade which 

compensate the smallness of the QCD coupling constant crs by the large loga- 
rithm In&*. It reads 

&4(x, Q*) = di?*) /’ d”pC~,oC~~ &*I 
a! 2 
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where P(z) is the Altarelli-Parisi evolution kernel. calculable in perturbation 
theory, and 4(x, Q*) is a generic parton density (matrix). 

Clearly, from the expression for Pi, we need strong ordering (Q* >> . . . > 
q$ >> . . . . . >> $ , = Qf) in transverse momenta of emitted partons since only 

under such a condition does one get a In&* contribution for each integration 
over qit in the parton cascade in Fig.5. This strong ordering means that the 
GLAP evolution equation allows us to calculate the probability to End a parton 
of transverse size rt x b inside the initial parton (quark or gluon) in the hadron 
at fixed Xg. In the case where both Q* and l/x~ are very large (the DLA 
approximation), the AP kernel simplifies to P(z) = N,a,/~z, and the solution 
to the GLAP equation for the gluon density reads then 

xG(x, &*I - xWo7 Q$ exp( 

where we = (*ln$/ln~)‘/*, 
cade. 

0 
and Qo is the initial scale of the parton cas- 

Note that the solution of the GLAP equation decreases as Q* increases. 
This agrees with the intuitive notion that, because of asymptotic freedom, the 
hadron should be almost empty at small distances. 

“0 

Figure 7. Structure of the parton 
cascade at small tB and the coher- 
ence in the ladder diagram. 
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The situation changes crucially if we consider the behavior of the parton 
density 4 in another extreme regime: at fixed Q* but small Xg. Here we have 
the large logarithm L = In &. The picture of the parton cascade, Fig.7, 
shows that the number of partons increases drastically in the region of small 
xg, since each parton in the basic branching process in Fig.5 is allowed, due 
to the abundance of available energy, to decay in its own chain of daughter 
partons. Let us estimate the total multiplicity of gluons NC associated with 
this complicated process. 

We are able to estimate the number of cells in this chain diagram, which 
corresponds to the typical number of parton (gluon) emissions in one a&process 
in our parton cascade (%iJ. The characteristic value of Ayi,i+r, the rapidity 
difference between two adjacent rrmgs of the ladder, is equal to Ayi,i+l oc l/o, , 
from the expression for gluon emission Pi. Thus 

nC= 
In & 

- cc ad -In -& , 
AYi,i+ 1 

(10) 

The total number of NG partons that could interact with the target can then 
be calculated as follows (see Fig.7): 

~~ o( e”o = em InI/ = (my. , 
XB 

(11) 

where the constant c should be calculated using the exact BFKL equation [21]. 
In first approximation ccr, = 0.5. 

2.2 A new scale for the deeply inelastic process at xg + 0. 

Thus in the region of small xg the density of partons increases. A careful study 
of the behavior of the parton cascade shows that also the mean transverse 
momentum of the parton increases. The reason is as follows. In the case where 
we neglect the running coupling constant of QCD our theory is dimensionless 
so each emission leads to a value of the transverse momenta of the daughter 
gluons which is of the same order as the transverse momentum of the parent 
gluon. This could be seen just from the explicit expression of Pi. We introduce 
the ratio ] In q$/qf+l,tl which ch aracterizes the emission. It is roughly constant. 
After nG emissions 

< I Wz$/Q~)I > CK J;;c = (12) 

since the parton cascade corresponds to a random walk in the variable 
ln(&/Q?J WW31 ( see Fig.8). The new scale mentioned in the title of this 
subsection is q$. 
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Although we will not explicitly present the BFKL equation here, we will 
give the solution to this equation with the initial condition xgG(xg = 20) = 
Wn(Q*/Qi$)). Th’ 1s is instructive because it shows explicitly all the properties 
mentioned in the above: 

WY - YO, r - TO) =, 
1 

- exp{wo(y - ~0) - 
(r - ro)* 

~Aw(Y - YO) 8AWO(Y - YO) 
1 

where 

wo = as(Qa)N,q ln 2 A 14CC3) 
?r 3 =4, y-yo=lns, r-ro=ln$ 

Xl3 0 

2.3 Saturation of the gluon density. 

The increase of the parton density leads to a new problem in deeply inelastic 
scattering, namely the violation of s-channel unitarity. This is the requirement 
that the total cross section for virtual photon absorption be smaller than the 
size of a hadron. 

a(r*N) ce: nR$ (13) 

At small xg the gluon density dominates and we can write 

4r'W = wnst- a;; Wx, Q*> 

where cast a,,/Q* app roximates the cross section a(r*g). We have shown 
previously that the value of the gluon density increases very rapidly as x + 0. 
Using the DLA result (see eq.(ll)), we can rewrite the unitarity constraint in 
the following way, dropping the const: 

!?d$ . (ii&-‘0” 5 &,. (15) 

Here we replaced (rem by a, since the probe can also be a virtual gluon, not 
just a virtual photon. 

From this expression alone one can conclude that unitarity will be vio- 
lated [23] at 

x < Xcr 
1 

where log - = 
1 1 
- * - ln( 

AR;Q* 

Xcr c ad&*) ad&*) 
) (16) 

Therefore unitarity is violated even for (very) large values of Q* when x c x,,. 
Clearly the miraculous confinement force cannot prevent this from happening. 
Thus we have to look for the origin and solution of this problem within pQCD. 
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Let us try to understand what happens in the region of small zg by exam- 
ining the parton distribution in the transverse plane (see Fig.6) 4. Our probe 
(photon) feels those partons whose size is of the order of 4. To begin, at z - 1 

we have only several partons that are distributed in the hadronic disc. If we 
choose &* such that 

2 
rP 2 < lg. 

Q2 (17) 

then the distance between partons in the transverse plane is much larger than 
their size and we can neglect the interaction between par-tons. The only process 
which is essential here is the emission of partons that is taken into account in the 
usual evolution equation. As z decreases the number of partons increases and at 
some value of 2: = zcr partons start to densely populate the whole hadron disc. 
For z < zcr the partons overlap spatially and begin to interact throughout the 
disc. For such small s-values the processes of recombination and annihilation 
of partons should be as essential as their emission. Both these processes are 
however not incorporated into either the GLAP or BFKL evolution equations. 

What happens in the kinematical region z < z, is anybody’s guess but there 
is enough experience with some models [24] to suggest the so-called saturation 
of the parton density [3]. This means that the parton density 4, which we 
discussed before, is constant in this domain. 

3 Two scales of hardness at high energy. 

3.1 Two scales of hardness for deeply inelastic processes. 

Let us now discuss all new phenomena on a more quantative basis starting 
from the low density (pQCD) region. First, we need to incorporate in our 
theoretical approach the increase of the gluon density and the gluon mean 
transverse momentum. For simplicity, to illustrate all problems encountered 
in the region of large energy (small ZB), let us consider again deeply inelastic 
scattering. 

The main difference between the small sg region and the region of moderate 
zg comes from the fact that we have two scales of hardness in deeply inelastic 
scattering, namely &* and the mean transverse momenta of the emitted gluons 
(p:). Thus we cannot use the GLAP evolution equation. Rather, we should 
first of all study what scale is important in the region of small sg. 

In ep scattering we can distinguish three different regions in this process 
where the different scales of hardness are relevant. 

‘Recall that a high energy hadron in the parton model can be represented as a Lorentz 
contracted disc. 

18 



1. If Q* is larger than the mean transverse momentum of gluon (J$) the 
hard cell of our process consists of the exchange of the virtual photon (see 
Fig.9). In this caSe we have a typical deeply inelastic process and we can use 
the GLAP evolution equation. 

c? a> e&t&X)> a;! - q+*(x)> 

\ , 

El 

M (x~.x.a?t+*) 
1 dp?) 

Figure 9. Deepinelastic scattering in different kinematic regimes; 
< pt > is the mean transverse momentum of the gluon. 

2. If Q* is of the order of (pf) we have to calculate the interaction of the 
gluon with the virtual photon more accurately since it is this interaction that 
tells us what scale is important in this kinematic region and what the relevant 
hard process (hard cell) is. E.g. it could be quark - antiquark production rather 
than the exchange of a virtual photon. However, we know how to calculate the 
deep inelastic process in this region. The correct amplitude M(ze, z, Q*,pF), 
also depicted in Fig.9, WM calculated in refs. [lo]. Thus in this kinematical 
region we need to improve the GLAP equation. This was done in [25]. Here 
the emission of a parton in the basic branching process (Fig.1) was rewritten 
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in a form such that it depends only on the previous stage of emission. Such a 
form is very well suited for Monte-Carlo simulations and allows one to obtain 
a numerical solution for the evolution of the parton cascade. 

3. For the cae (p:) > Q* the hard cell is somewhere in the middle of our 
parton chain, Fig.9. This means that in this kinematical region the deeply in- 
elastic process looks rather more like high qt jet production in hadron- hadron 
collisions than a p;obe of the parton content of the target nucleon. All ingredi- 
ents, e.g. to determine the (off-shell) photonic parton densities, are present for 
a thorough investigation of this process. However this has not been done yet. 

3.2 Transverse momentum factorization. 

A natural generalization of eq. (7) is so-called transverse momentum factoriza- 
tion [lo]. The transverse momentum factorization generalizes the factorization 
theorem (7) to the caSe when the value of the mean transverse momentum of 
partons becomes compatible with the natural scale of hardness in the process, 
e.g. the kt of a produced jet, It reads (for inclusive one-jet production) 

dcr(A + B -+ jet(xj, kt) + X) = CJ 2 

d In z@kt 
dx,dxbd ktad2k,b (18) 

ab 

%/A(% ho)%/d”b, hb)Z( %xb~, k:,, k:b, @6(*)&t - kta - ktb) . 

where A and B are hadrons, xj is the longitudinal momentum fraction of the jet 

and the 0 are so-called unintegrated parton densities: J{’ dkfa,(kF)c9(x, kf) = 
CY,(~*)+(X, ~1~). Furthermore, Z is the so-called impact factor which represents 
the cross section of “hard” scattering of off-shell partons. The impact factor 
has been calculated for many reactions in refs. [lo]. For gluon jet production 
it looks quite simple: 

z 3Nc = -a (min{ k;,, k;b, k:}) . 
rkf a 

In eq.(18) we can distinguish three kinematical regions: 
1. ha N kt > ktb. Here the gluon jet production can be rewritten in 

form: 
I the 

do(A + B -+ jet(xj, kl) + X) 
dlnxjdkf 

= dx,dxb 3NcQa (kt2) 
2 

xkt 
(19) 

dXa#b/A (xca, k:) 
dk,2 xb4b/Bt”b, k:) . 
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2. ktb - kt > kt,. 
Obviously we obtain the same expression as in the previous kinematical 

region via the substitution A(a) + B(b); B(b) + A(a). The above two regions 
together yield a simple formula for inclusive gluon jet production which is a 
direct consequence of the ordinary factorization formula (7) with the particular 
scale choice p = k,; 

do(A + I3 + jet(tj, kt) + X) 
d In xjdkf 

= CJ dx 
a 
dxb 3&h (k:) 

2 rkt 
(20) 

ab 

+tda/A (Xa, k:) - xb’&/B (sb, k,2>] 

dkf 
. 

As far as we know this formula was first proposed by Blaizot and Mueller [28]. 
3. kt, - ktb >> kt. 
The transverse momentum factorization formula takes into account this 

kinematic region which is completely omitted in the approach based on the 
ususal factorization theorem. In this kinematic region the total inclusive cross 
section cannot be deduced from the usual factorization formula (see eq.(7)) and 
has the form: 

do(A + B + jet(xj, kl) + X) 
d In zjdk! 

= dx dxb3NdXa(k:) 
a rk: (21) 

J k, dk? %/A( xa, k?) * @b/&b, k,n) - 
I 

Note that this region corresponds to a final state high parton density problem. 

3.3 Small Ict behavior of the one-jet inclusive cross’section and 
Landau - Pomeranchuk suppression. 

Inspecting the formulae for inclusive one-jet production one notes that this 
cross section becomes very large at small values of kt ( $ a $). The physical 
meaning of this behavior is easily understood by recalling ihat the total inclusive 
cross section yields essentially the multiplicity of produced jets, which is very 
large at small values of the transverse momenta. Thus in order to understand 
the small-ki behavior of this process we have to deal with a high density parton 
system even if the initial energy is not very high. Of the three kinematical 
regions defined in the previous subsection, it is very instructive to consider the 
first two separately from the third since then the low kt behavior is caused by 
different physics. 
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In the first two kinematic regions it is the behavior of the gluon density (SC) 
that governs the behavior. Indeed, at small-kt the gluon density is proportional 
to kf, due to gauge invarience of &CD. When rj is not too small the scale of 

such behavior ,u (xG a 3) is defined by confinement and cannot be calculated 
in the framework of perturbative &CD. However at high energy (small xj) p is 
just the new scale qe(xj) originated by the saturation of the gluon density, see 
Fig.6. Thus at small xj, and at a small value of the transverse momentum of 
the produced gluon, the one jet inclusive production in the first two kinematic 
regions can be written as 

da(A + B -+ jet(xj, kt) + X) 
d lnxj&kf 

= 2 SN,+,(kf) 
@o(dWoWB) 7 (22) 7r 

where 40 is the limiting value of gluon density that we have discussed in section 
2.3. We will consider it in more detail in the next section. 

However, even the saturation hypothesis cannot help us determine the final 
value of the inclusive cross section at small-kt for the third kinematic region 
(see eq.(21). This is because this region describes gluon production in the final 
state. 

Here we need to invoke the so-called Landau-Pomeranchuk effect ref.[29], 
which has been studied in detail in QED [30] and has been reproduced in 
QCD [31]. Th e essence of the LP effect is that if the formation time (7) of 
photon (gluon) emission becomes larger than the mean free path in the medium 
(X), destructive interference occurs between radiation amplitudes associated 
with multiple collisions in the medium. This suppresses the photon (gluon) 
bremsstrahlung. The formation time T is the minimal time needed to resolve 
the transverse wavepacket of a quantum with Ax1 w l/kl from the wavepacket 
of its high energy (E) parents (E > w where w is the photon (gluon) energy). 
The photon (gluon) emitted at angle 8 = % moves in a transverse direction 
a distance bl = 0~ during time 7. The photon (gluon) can be resolved only 
ifbl>Axim&. This inequality gives for the formation time. +r a $- = 

I 
& where mp is the proton mass. The Landau-Pomeranchuk effect can be 
&derstood in a simpler way in QCD than in QED since in QCD each gluon 
exchange leads to a change of the color of the emitted gluon and therefore 
destroys the coherence of the emission. If CT >> X the process of emission 
becomes noncoherent. It can be divided in n = cr/X intervals between which 
there is no coherence, due to destructive interference between these intervals, 
so that the cross section is proportional rather to n than to n2, as is the case of 
coherent emission, usually called bremsstrahlung. Finally we have to multiply 
eq.(21) by a factor C. A simple interpolation formula for C that describes two 
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regimes, coherent and completely incoherent emission, looks as follows: 

(23) 

This formula gives suppression of emission that leads to the final value of the 
inclusive cross section both at small zj and at small /it, since X a k: while 
7 = l/WZpZj. d 

Unfortunately we have no space to discuss the physics of the LP effect so 
we have to refer to theoretical paper on QED and QCD LP effect [29] [30][31]. 
The QED LP effect has been studied experimentally recently at SLAC, [32]. 
It shows excellent agreement with theory. However, much more experimental 
work is needed to check the applicability of this method to control the accuracy 
of our calculation in the case of &CD. Let us finally remark that the LP effect 
in the context of the factorization theorem means that in this kinematic region 
the leading-twist factorization theorem (7) no longer applies since we have to 
take into account higher twist contributions which are intimately related to 
rescattering of produced partons (quark or/and gluon) in the environment of a 
relatively dense parton cloud. 

3.4 Parton cascade in real time. 

Let us briefly mention a different approach to the calculation of inclusive pro- 
duction. It was fist suggested by Blaizot and Mueller [28] and was carried 
significantly further by Geiger and Muller [33] (see also Geiger’s paper [34]). 

The main idea rests on the fact that the simple factorization formula, 
eq.(20), is correct in the very instant of the first collision (t = to) between 
partons from different hadrons, which results in production of a jet with kine- 
matic variables (zj, kt). Thus we can use formula (20) as the initial condition 
at t = to for the evolution of the final state parton cascade. 

We can write the semiclassical transport equation for this evolution (see 
refs.[28][33][34] for details) introducing the time-dependent spatial density of 
partons of species a F,(p, r, t), where &d3pd3r is the expected number of par- 
tons of type a in d3r about r with momentum d3p about p at time t. 

The transport equation can be written in the form: 

PQJ?, = c I, 
processes 

(24) 

where I is the Lorentz invariant collision integral. The exact form of I one can 
find in refs.[33],[34]. The gluon density can then be written as 

zG(s&) = J k: 
0 

dkfd3rFG(k;, k,, r, t = 0) . (25) 
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We can use the above expression together with eq.(20) to establish the initial 
condition for the transport equation. Unfortunately, such an initial condition 
has not been used in practical applications of the method (see refs. [333[34]). 

In such an approach we hide all the problems of small transverse momentum 
behavior as well as the violation of the factorization theorem in the concrete 
form of the collision integral in the transport equation. It is the most economic 
way for writing Monte Carlo programs that simulate the structure of the final 
state in a typical inelastic event. However it is very difficult to take into account 
coherence effects such as the LP effect. Without taking this into account how- 
ever we certainly overestimate the number of partons in the final state. E.g. we 
then cannot perform a reliable evaluation of the probability for Quark Gluon 
Plasma production in ion-ion collisions, in the case where we are dealing with 
a dense system of produced partons. 

4 Shadowing corrections and nonlinear evolution 
equation. 

4.1 Qualitative derivation of nonlinear (GLR) evolution equa- 
tion 

We have discussed in section 2.3 that at small xg (high energies) the density 
of gluons becomes so large that the unitarity constraint is violated, even at 
large values of Q 2. We argued that the physical processes of interaction and re- 
combination of partons, which are usually omitted in perturbative calculations, 
become important in the parton cascade at a large value of the parton density. 
To take into account such processes we have to identify a new small parameter 
that lets us estimate the accuracy of our calculations. This small parameter is 
i231 L A 

w= s &,Q’) - 

The first factor in eq.(26) is the cross section for gluon absorption by a parton 
from the hadron, whereas p is defined in (8). Effectively, W is the probability 
of a parton (gluon) recombination in the par-ton cascade. We can rewrite the 
unitarity constraint (15) in the form 

w 5 1. (27) 

Thus, W is the natural small parameter in our problem. Amplitudes which take 
gluon recombination into account can be expressed as a perturbation series in 
this parameter [23]. We can resum this series? and the result of the resummation 
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[23) can be easily understood by considering the structure of the QCD cascade 
in a fast hadron. Inside the cascade there are two processes that occur 

Emission ( 1 + 2 ); Probability a crs p ; (28) 

Annihilation ( 2 + 1 ); Probability a (I: r2 p* a (~5 1 p2 , 
Q2 

where r is the size of produced parton in the annihilation process. For deep 
inelastic scatterinq r2 a &. 

It is obvious that at Xg N 1 only the production of new partons (emission) 
is essential since p << 1, but at XB + 0 the value of p becomes so large that 
the annihilation of partons enters into the game. This simple parton picture 
then allows us to write an equation for the density of partons, p, that takes all 
these processes properly into account. The number of partons in a phase space 
cell (Ay = Aln &, A In Q2) increases due to emission and decreases as result 
of annihilation and thus the balance equation reads 

& %NE “372 

aln &61nQ2 =- - Q2” R ’ 

or in terms of the gluon structure function XBG(XB, Q2) 

(29) 

~XBG(XBYQ~) = ~~~~~~~~~~ Q2) _ aY5’Y 
aln$dlnQ2 9 lr 

?r~2 (XBG(XB, Q2))2 . (30) 

This is the so-called GLR equation [23]. The parameter 7 can in fact be cal- 
culated order by order in W-perturbation theory, and was found in ref.[35] to 
be 

81 
7 = ;i~; for N, = 3. 

4.2 The scale of the shadowing corrections (SC). 

The second term in eq.(30) describes the shadowing corrections and its value 
crucially depends on the value of R 2. The physical meaning of R2 is clear: R 
is the correlation radius between two gluons in a typical hadronic situation (at 
Xg hr 1). In our derivation of the GLR equation we made the assumption that 
there are no correlations between gluons except due to the fact that they are 
confined in a disc of radius R. 

If R = Iiproton the value of the SC is negligably small. 
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If R e &mm the SC could be large (see refs. (41][42][46]). Recently the 
first theoretical estimates of the value of R have been performed by Braun et 
al. [43] within the framework of QCD sum rules. They found 

R = 0.3 - 0.35 Fm N 

an encouraging result for experimental study of SC at present energies. 

4.3 New scale of transverse momentum (the critical line). 

4.3.1 The main property of a solution of the GLR equation 

First let us rewrite the GLR equation eq.(30) in new variables: F = xG(x, Q2); 
Y =yln$and<= lnlnQ2/A2. In these variables it reads: 

aZF -= 
ayR 

c.{l - y’exp[-t - ee]F}, (31) 

where y = ,&r and the terms et ( -[) in the exponent correspond & (cu,) 
resp. Inspecting eq.(31) we can guess the main property of the solution. At the 
start of the evolution when the value of the structure function is small we can 
neglect the nonlinear term. The derivative with respect to y is positive here, 
so the structure function increases monotonically with y, or In 4. This growth 
continues up to the value 

F mar = $. exp[[ + et] . 

At this value of F the derivative vanishes. If F > F,,,,, the derivative from 
the GLR equation becomes negative and thus F ,,,== is the limiting value of the 
gluon density and is the solution of the GLR equation as x + 0. 

Therefore, at each value of Q2 there is a critical value of x = x,, when F = 
F nla2 or. conversely, at each value of x there is a critical value of Q* = q:(x) 
when F = F,,,. This value Q2 = qi(x) is a new scale of transverse momentum 
in the parton cascade. The behavior of the gluon density changes crucially at 
Q2 = O(q$(x)). Indeed: 

Q2 > q;(x) F = FLAP (x,lnQ2) , 

where FLAP means that F is a solution of the linear GLAP equation and a 
smooth function of InQ2. Alternatively 

Q2 < q:(x) F a * - Fmal . 
&4 
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We postpone the discussion of the physical meaning of this new scale and instead 
determine first the z dependance of q:(x). 

4.3.2 Trajectories. 

To study the solution of the GLR equation it is very useful to start with a 
semiclassical approach which based is on so called trajectories. It is easiest to 
find the solution to the linear equation by passing to a moment (w) represen- 
tation and introducing the anomalous dimension 7. In moment representation 
the solution then looks as follows: 

FhQ2) = J ~Mo(w, Q2)ewy + y(w)t , 
where Mo(w, Q2) is the initial distribution at Q2 = Q,’ and the anomalous 
dimension r(w) = &. At large y (small x) we can perform the integral by 
saddle point approximation. The position of the saddle point is determined by: 

Y =- dln&W _ d$w) 
dw z*t * (33) 

This equation describes a family of curves x = x(t) which can be considered 
as semiclassical trajectories of parton evolution, since w is a constant of a mo- 
tion in the linear evolution equation. The semi-classical values of (y,<) along 
the trajectory give an approximate estimate of the structure function at fixed 
Q2 and x. Of course this method yields nothing new for the linear equation, 
however it can be generalized to the nonlinear case. 

4.3.3 Semi-classical solution to the GLR equation. 

In semi-classsical approximation we parametrize the solution to the GLR equa- 
tion by writing 

F = es assuming S, Se > S,,, , 

where S, = g , St = @ and Sr,c = &. It should be noted that for the 
linear equation S = m and one can check that the above inequality holds to 
good accuracy. 

Thus in the semiclassical caSe the GLR equation can be reduced to the form: 

s, s, = f(1 - +y’ exp{ S - et - 0) * (34) 

Eq. (34) can be solved with the method of characteristics, or trajectories [23], 
[45], [44]. Introducing the “intrinsic” time along the trajectory and denoting 
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the derivatives with respect to this time variable by 6 etc. we can rewrite the 
GLR equation as the following system of ordinary equations: 

= St 
y = s, 

s = 2&S< 
4, f -7’ S,exp{S - eE - 0 

s, = -7’ [S, - 1 - et) ezp{ S - et - 0 . (35) 

In the linear case this system of equations has simple solution: 

s, = w = Co?lst ; s, = & = Cmst ) 

which coincides with eq.(33). Along each trajectory of the linear equation the 
rescattering probability W = ?/ exp{S - et - < } increases at the beginning 
when S x 1, reaches the maximum value when St = (1 + et ) and then 
decreases at larger 4. However the trajectories of the GLR equation become 
quite different from the linear ones. Indeed, in the region where W becomes 
of order one the derivatives S, and St are not small and trajectories are not 
straight lines. It has been shown in a number of papers ((231 (451 [44]) that a 
remarkable trajectory (critical line) exists in the nonlinear equation that sepa- 
rates the region of almost linear trajectories (small values of W 5 O(a,)) and 
strong nonlinear solutions. 

It is easy to check explicitly that for large t 

e2t et gm=-; =e 
4 

S 6 - In+; S, = e-< ; St X z (36) 

is the solution of eq.(35) and the GLR equation as well. To the right of the 
critical line (x > x,) the equation yet = $ looks as follows in the usual 
notation: 

1 
In- = & ln2(Q2/A2) (37) 

XC? C 

the nonlinear corrections are so small that we can neglect them and can use the 
trajectory of the standard GLAP equation. However when x becomes smaller 
than xctr w + 1 and we have to use the nonlinear trajectory. The remarkable 
fact is that trajectory cannot cross the critical line which is also a trajectory. 
Using this property one can suggest the following way to solve the GLR equa- 
tion. To the right of the critical line it is enough to find the solution of the linear 
(GLAP) equation with the new boundary condition F = es with S = et -1nq 
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on the critical line (see eq.(36) ). To the left of the critical line we have a sep- 
arate system of trajectories. The solutions to the left do not depend on the 
solutions to the right of the critical line. However precisely here we enter the 
very interesting kinematic region of high density &CD. Even the GLR equa- 
tion is not the right tool to solve problems in this region since not only the 
recombination of two partons is important in this region but also simultaneous 
interaction of three, four and etc partons. 

4.4 The physical meanning of new scale for the typical trans- 
verse momentum in the parton cascade. 

The equation for the critical line (37) yields a new scale for the value of the 
typical transverse momentum in our parton cascade, namely: 

2 = &j,“(X) It+0 + A2 em. (33) 

In section 3.3 we have argued that this new scale plays the role of the infrared 
cut-off in inclusive production (see eq. (20) ). It should be stressed that this 
new infrared cut-off has a dynamical origin: parton - parton recombination in 
the parton cascade. It is not related to confinement. 

We would like to draw attention to the fact that go(x) is also the Landau- 
Pomeranchuk momentum in our parton‘medium. Indeed, in the saturation 
region qt < go(x) the mean free path X does not depend on x. X = l/aT where 
u is cross section of parton - parton interaction (a cx czS-$) and T = zG(x, qt) 

is the number of partons with transverse momentum qt at fixed x. If qt < go(x) 
T o( q&b0 and aT = Const(qt). Thus’X is equal to the formation length of 
a parton with x = so that can be found from the relation qo(xo) = qt. If 
qt > go(x) th en ~0 cc xG(x,qt)/qf < l/ mx so X is big. Therefore, go(x) is 
precisely the LP momentum and the interpolation formula for C for emission of 
gluon with transverse momentum qr and fraction of energy rj can be rewritten 
as follows: , 

C= 
l+A.&&* 

2 91 

(39) 

4.5 Correlations. 

We assumed that there are no correlations between gluons in the cascade ex- 
cept for the fact that they are distributed in the disc of radius R. Then the 
probability to find two partons with the same value of In & and In Q2 (P2) is 

P2 cc p2 . (40) 
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However this assumption is only correct in the case of a large number of colors 
(NC + 00) [72). If NC is not large refs. [72] claim 

p2 

J 
4N,a, -+exp( - p2 A Q2 l 2) ?$(@-l) * (41) 

We would like to note that Bartels and Ryskin [37] found that such a correlation 
leads to a decrease of the correlation radius R by a factor of 1.3 - 1.4 in the 
HERA kinematic region. 

It is also very instructive to write down the evolution equation that takes 
into account the correlation of eq.(41). We should mention that next-to-leading 
twist contributions were first related to what we defined as 9 in (381. It is a 
system of two equations, instead of the single equation of eq.(30),namely 

@P &NC a27 
L-2 3 

dln&alnQ2 = ?rp - Q2 (42) 

@p2 

aln&ainQ2 = 
F(l + (N?l_ I)) P2 - qg P2P . (43) 

Here we assumed that the probability to find three partons in the same cell of 
the parton phase space is P3 = P2 * p. Without this assumption the last term 
in eq. (43) reads as 2&/Q2 . P3. The general equation for P, is (see ref.[46] 
for details) 

@El na2y 
dlnkdlnQ2 

= wynP, - d Q2 ‘n+l (44) 

This equation indicates the need for the solution of two theoretical problems. 
(i) We should find a general equation for T,,, which has the formal meaning 

of the anomalous dimension of a high (272) operator (refs.(46],(71], [72]). 
(ii) We need a closed form of the equation which incorporates all P, for the 

deep-inelastic structure function, and its solution. 
The first problem was solved by A.G. Shuvaev and us in ref.[71]. The com- 

plicated problem of gluon-gluon interaction was reduced to that of interaction 
of colorless “gluon ladders” (Pomerons). It was shown in ref.[72] that this idea 
works for the case of the anomalous dimension of the twist four operator, in 
other words, for the case of P2. The fact that we can consider the rescattering of 
n Pomerons to find y,, (or Pn) signifies that we are dealing with a quantumme- 
chanical problem: the calculation of the ground state energy for an n-particle 
bosonic system where the interaction is attractive and given by a four-Pomeron 
contact term, with a coupling proportional to X = 4cr,/(Nz - 1). This observa- 
tion simplifies the problem and enabled us te reduce it to solving the nonlinear 
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Schrodinger equation for n Pomerons in the t-channel. It should be stressed 
that this effective theory is a two-dimensional one, the two dimensions being 
spanned by In $ and In Q2: the Schrijdinger equation can be written for n 
particles on a line. It is well-known that this problem can be solved exactly 
(e.g. by Bethe Ansatz) and the answer was found to be 

7n = Nz;“2 I1 + ; (N2 ‘_ 112 tn2 - ‘>] (45) 
c 

Although Pomerons are bosonic, maximally two Pomerons occupy a single- 
particle level in this groundstate configuration, thus behaving like fermions. 
This is due to the two-dimensional nature of this problem. The second problem 
has also been (partly) solved by us (unpublished but see ref.[46] for results). 
We introduce the generating function 

P(xB, Q2, 7) = 2 Ren9 
n=l 

(46) 

with PI = p. Using eq. (44) we obtain 

d2P 
aln&alnQ2 = +(‘,, + ; (N2 ‘_ 112 (‘,,,, - ‘7,) 

c 

-azye- rn(Qz)e-9(p9 _ p) 9 (47) 

where PI, = ap/afl, P,, = #P/13q2 etc. The deep-inelastic structure function 
is the solution of this equation at q = - ln(Q2), viz. 

=JB G(xB, Q2) = TR’P(xB, Q2, 7 = - ln(Q2). (48) 

Eq. (47) is a new evolution equation which allows one to take into account both 
initial and dynamical correlations between gluons in the parton cascade. The 
key problem in solving it is nonperturbative in nature, namely to determine an 
initial condition at zg = xi. The dependence of P(x$, Q2, q) on 7 describes 
the correlations between gluons in the hadron near XB w 1. The simplest case is 
to neglect this initial correlation and use the eikonal approach for P(x”,, Q2, q), 
namely 

P(x”,, Q2, 7) = 5 en’J(-yjn” PI (x”,, Q2)” = 1 - exp( -e’JPl (x”,, Q2)) (49) 
tl= 1 

The solution of this equation has not yet been found (see ref.[46] for more 
details). 
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5 A look at the first small zB HERA data. 

5.1 25 nb-’ experimental data. 

Let us list conclusions from the first experimental results at small xg from both 
collaborations at HERA (refs.(20]): 

1. The increase of the value of the deep inelastic structure function F2 at 
ZB + 10 -4 shows that the gluon density reaches sufficiently big value,namely 

xgG(Xg, Q2) + 40 - 50 at XB = 10B4 and Q2 = 20GeV2 . 

The value for xgG(xg,Q2) = 50 was determined from the MRSD-’ 
parametrization that roughly describes the new data. 

2. The ZEUS collaboration measured the diffraction dissociation5 cross 
section and found 

uDD 5.2nb -=- 
8Onb 

= 6 low2 at 28 = 10m4 and Q2 > 10GeV2 . 
ut 

We will say more about this shortly. 
3. F2 experimental data can be described by the GLAP evolution equation 

assuming that at the initial vituality Qg N 5GeV2 the gluon structure function 
rapidly increases at XB + 0 as zgG(z~,Q$ cc x;;” and wg 1 0.3. 

4. Both collaborations measured the total photoproduction cross section 
both for very small virtualities of the incoming photon and for real photons. 
This cross section exhibits a common property of “soft” processes, namely ot + 
S OA where A w 0.08. 

5.2 The value of SC from HERA data. 

Let us first try to see how the large number of gluons (40-50) can be understood. 
We believe that an interesting way to do this is to compare the proton at 
XB = lo-4 ad Q2 = 15GeV2 with an iron nucleus, which has a similar amount 
of nucleon constituents. Calculating the packing factor by assuming the size 
of the constituents to RN = 0.86Fm for the nucleons, and RL = l/Q2 for 
the gluons, we find that if one assumes the size of the gluon disc to be RN/~ 
(section 4.2), that the two packing factors are very similar. Thus, in this sense, 
we see that a proton Xg = low4 and Q2 = 15GeV2 is very similar to an iron 
nucleus. 

‘Diffraction dissociation is the process in which a number of hadron is produced, and one 
recoiled proton, whose fraction of energy is close to one. 
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We now estimate the size of shadowing corrections for the deep-inelastic 
structure function. Let us write it as 

F~(zB, Q*) = @LAPb~, Q2> - AWw,Q*) 1 (50) 

where qLAP is the solution of the usual (GLAP) evolution equation and AF2 
is the SC. A straigtfonvard estimate gives 

A& - a a$ < ri > p + 0.1 for Q2 = 15GeV2 and x8 = 10e4 . 
F2 

(51) 

However the ZEUS data on diffraction dissociation let us estimate the value 
of SC better. Indeed, it was shown in ref. [36] that we have the following 
relationship between SC and the DD cross section 

(AFz( = FfD , (52) 

where F2DD was defined in ref. (361. In other words ]Acrt/crt] = $$/o, . 
where gt is the total photoproduction cross section. Prom the ZEUS data we 
can then conclude: ]AI;;]/F2 > 6 * 10 -2 . Note that in this caSe we can not 
just begin to discuss the question whether there is SC, but even whether we 
could predict this SC value in our theory. 

We remark that the details of the evolution equation for FTD were discussed 
in ref.[36], where it was suggested to measure the sum F2 + F2DD in which all 
contributions of SC are cancelled. Thus for this sum one can use the GLAP 
equation even at small xg. 

5.3 Saturation of the parton density or different physics for 
“soft” and “hard” processes? 

The HERA data allow us to raise the question which we put in the title of 
this subsection. Indeed, we can distinguish two regions in Q* that have quite 
different energy behavior of the photoproduction cross section and will list the 
experimental facts that pertain to these regions. 

1. Q2 < 1 GeV2. (i) The total cross section is essentially constant here (or 
increases slightly with energy); (ii) e x 10%. Thus in this kinematic region 
the photoproduction process with sr&l values of photon virtualities seems to 
be typical soft process like a hadron-hadron collision. 

2. Q2 > 5GeV2. (i) The total cross section increases rapidly with energy 
(2~) ot a xS*; (ii) $ w 10%. This is the typical deeply inelastic scat- 
tering process. Both experimental facts can be interpreted as arising from the 
contribution of a so-called “hard” Pomeron, which is a solution to the BFKL 
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equation (21) and leads to Al oc xjjwo with wg > 0.4 while the smallness of the 
ratio e has a natural explanation in the small values of SC. 

Thzquestion arises what happens for intermediate value of photon virtual- 
ities 1GeV2 < Q* < 5GeV2. Two different scenarios for this kinematic region 
exist: 

Landshoff picture: At Q2 < 1GeV2 all experimental data for photo- 
production as well as for other soft processes can be described by exchange 
the soft Pomeron which is the old Regge pole with intercept aBD = 1 + e 
cc - 0.08 < wo) (see ref.[39]). The small value of the ratio Q can then 
be interpreted as an indication that the SC are small and can <h treated in 
a perturbative way in this approach. In particular Donna&e and Landshoff 
considered only two Pomeron exchange. In this picture the region of deeply 
inelastic scattering has different underlying physics, rather related to a hard 
Pomeron. The transition between the “hard” and “softn regions seems quite 
arbitrary at the moment. However this approach is very simple and provides 
an elegant description of all available experimental data on “soft” processes. 

Saturation of the parton density: The second scenario is intimately 
related to the hypothesis of parton density saturation. In this scenario the 
“hardn Pomeron is responsible for the behavior of the totdnposs section in 
both kinematic regions, but the small value of the ratio 0 is interpreted 
differently for large and small virtualities: for large virtualities it supports a 
small value of SC, while at small ones we interpret it as an indication that the SC 
becomes very large and leads to the black constituent quark disc. The greatest 
advantage of this scenario is the unified description of both the diffractive and 
inclusive process, and that it is based on solid theoretical background, namely 
properties of the “hard” Pomeron and the shadowing correction in perturbative 
&CD. However we have to note that a description of the data has not yet been 
done within this hypothesis, in spite of the fact that these two scenarios lead to 
sufficiently different behavior in the region of intermediate virtualities of photon. 
In the second scenario we expect some transition region with smooth behavior 
of ut versus Q 2. A first try to extract this behavior from available experimental 
data shows that such a transition region does not contradict them [47] but it is 
still too early to draw a definite conclusion from the data. 

6 Predictions. 

6.1 The structure of the typical inelastic event. 

Here we are going to discuss how the new phenomena will manifest themselves 
at high energies. As discussed the most important prediction that originated 
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from QCD is the appearance of a new scale qo(x) for the transverse momentum 
of the partons. For phenomelogical purposes we make here the following ansatz 
for q:(x) [63]: 

d(x) = Q; + A3 (53) 

where we introduced three phenomenological parameters (Qo, h,xo) to de- 
scribe the low energy behavior of qo(x). These parameters cannot be calculated 
in perturbative QCD and we have only estimates from QCD sum rules. There 
are some attempts to extract the values for these parameters directly from inclu- 
sive jet production using formulas (18). One 6nds that Qo = 1.4 GeV, A = 52 
MeVandm= l/3 ([40]). With these numbers one can estimate typical values 
of qo(x) for various colliders. E.g. for the Tevatron at a value of x = 1.8. 10e3 
one has qo(x) = 3.3GeV. This is a typical value and thus the transverse mo- 
mentum much larger than the observable transverse momentum of a produced 
hadron (a several MeV). However these two transverse momenta are compatible 
if one takes into account the fragmentation of partons into hadrons [40]. 

Thus we can formulate the first prediction: 

The main source of secondary hadrons is provided by semihard processes in 
which the gluon (quark) jets are created with transverse momentum kt - qo(x), 
decaying eventually into hadrons. 

In other words, in QCD the inclusive production of hadrons which seems 
to be a typical “soft” process instead is “hard” and thus calculable in pertur- 
bative &CD. The most straightforward consequences of the semihard origin of 
multiparticle production are 

1. a significant growth of the transverse momentum for the hadron minijets: 
qt a q0 - hexp ( 1.25 &); 

2. a rapid increase of the total multiplicity: N a qi N exp (2.52 6); 
3. a decorrelation effect for jets with transverse momentum kt of the order 

of qo. The value of transverse momentum for such a jet is compensated not by 
one jet in the opposite direction but by a number of jets with average transverse 
momentum about qo. 

The above essential ideas about semihard processes lie at the basis of all 
available Monte Carlo programs for simulation of typical inelastic events at high 
energies. 

6.2 Total cross section in QCD. 

The total cross section of deeply inelastic scattering is directly related to the 
parton density (see eq.(lS)). However the previous discussion shows that we 

35 



need more theory in the region of high density &CD in order to understand the 
behavior of the total cross section, especially if we are going to discuss the cross 
section of hadron - hadron interaction beyond merely the deeply inelastic case. 
To learn the main properties of this total cross section we have to understand 
better the parton distribution in impact parameter (bt) space. It is well known 
that each parton takes part in a random walk in bt (ref.[49]). This random walk 
provides a unique mechanism for an increase of the interaction radius at high 
energy. This follows directly from the uncertainty principle: 

Abtqt = 1 or Abt x ;, (54) 

where Abt is the change of the impact parameter of the parton for a single 
emission in the parton cascade while qt is the typical transverse momentum 
for such an emission. In section 4.4 we have shown that qt + qo(x) at high 
energy; since qg(x) is big the displacement Abt for each parton decay (emission) 
becomes negligibly small. In other words the appearance of a new scale in the 
parton cascade leads to all partons being frozen in bt. Thus sooner or later the 
parton density at fixed bt reaches its limiting value at sufficiently high energy 
within the framework of parton density saturation hypothesis. 

Let us assume that all partons at bt < R(s) have reached the saturation 
value of parton density and then try to understand what happens when a new 
parton is emitted. If the emission takes place inside of the disc of radius R(s) 
(bt < R(s)) th e emission cannot change anything since the new parton will 
be absorbed by nearby partons just after its production. However if the new 
parton is emitted just on the edge of the parton disc (bt x R(s)) it can go 
outside of the disc, its displacement in bt depending on the minimal transverse 
momentum in such a decay (emission) Qo. Again, the parton cannot go into 
the disc due to the strong absorption there. Thus, the change of the radius is 

dR(s) wo 
dins a &o’ 

where wg is the probability of gluon (par-ton) emission (see section 2.2) and 
Qo is the minimal transverse momentum. Qo is the purely phenomenological 
parameter that we would like to keep equal to Qo in eq.(53) because these two 
values have the same physical meaning. Even these simple arguments show 
that we need some additional assumptions to deal with the problem of the total 
cross section. 

However the main property of the behavior of the total cross section as well 
as the diffractive dissociation cross sections follow directly from the hypothesis 
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of parton density saturation. Our second prediction can then be formulated as 
follows: 

A fast hadron interacts with the target as a black disk with a radius that 
increases with energy us R(s) = ijl: Ins. 

The value of energy and the preasymptotic behavior depend very strongly 
on other phenomenological assumptions. 

Summarizing this subsection we emphasize that in spite of the fact that the 
total cross section as well as other exclusive processes at high energy need a 
nonperturbative approach, the general property of the parton cascade in QCD 
together with only one phenomenological assuption (parton density satumtion 
hypothesis) allows us to predict a principal feature of their high energy be- 
havior. We hope that this prediction can play a guiding role in such a future 
nonperturbative approach to the problem. 

6.3 The Mueller - Navelet processes (“hot spot” hunting). 

The brief discussion in the previous section has made clear that we cannot 
rely only on the main properties of a typical inelastic event if we want to see a 
indications of new physics. The theory gives us quite transparent predictions for 
a typical event but we have not yet found a theoretically selfconsistent way to 
estimate the value of energy at which all new phenomena enter into the game. So 
we must invent experiments such that new physics manifests itself most directly. 
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Figure 10: Differential cross section for two-jet production vs. rapidity differ- 
ence of the two jets. Here ~1, ~2 are the momentum fractions of the jets, and 
the iii (i = 1,2) are their transverse momenta. 
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One way to penetrate the interesting kinematic region is via so-called 
Mueller-Navelet processes [50]. The main idea of this approach is to create 
an experimental situation in which we can measure the parton density in a 
small region (“hot spot”) inside a hadron. Since the distances in such processes 
are small we can predict better the increase of parton density as well as the 
value of shadowing corrections which are sizable here (R* in the master equation 
(30) is small). 

The simplest Mueller - Navelet process is inclusive single jet (Zj, Ict) produc- 
tion in deeply inelastic scattering in the kinematic region where xg < Zj ; Iif x 
&*. In such a process the virtual photon probes the region of a proton that is 
smd (not apt 0~ & --K EZprotm). At a suffi ciently small value of the ratio y 
one penetrates directly the region of high density QCO in Fig.4 where we antic- 
ipate a significant increase of par-ton density and large SC. HERA is planning 
to measure this process and it has been discussed in many papers (see ref.[51] 
for detailed information on this subject for experts). 

In hadron - hadron collisions we can create a similar situation if we measure 
the double inclusive cross section of two-jet production with large but equal 
transverse mopmenta kit zz k2t and sufficiently large rapidity difference be- 
tween them. Fig.10 shows our preliminary estimates for this Mueller - Navelet 
process at Tevatron enegies. See also [52]. One can see that the cross section of 
such a process is not small and that the difference between standard approach 
based on the GLAP evolution equation and ehe new one that implemented the 
new physics of section 2 is also seems sizable. Thus we can say 

For Mueller - Navelet processes we expect strong energy dependence o x 
cP(~~) if all x for jet or virtual photon are fized, plus 4 sirable shadowing eflect. 

6.4 Diffraction Dissociation (DD). 

We introduced diffraction dissociation in the section 5 and hopefully convinced 
the reader that this process yields direct information on the size of the shad- 
owing correction. We emphasize that in this process one measures the struc- 
ture function of the Pomeron in frrst approximation [53]. In spite of the fact 
that we have not understood what a Pomeron is, it is clear that it is small 
(TP MCfOn z 0.2Fm < Goton). Thus DD in deeply inelastic scattering is one 
more way to measure the parton density for a gluon system confined in a small 
volume. 

The modification of DD in DIS for hadron - hadron colliders is so called 
“hard” diffraction, namely the production of two jets with large transverse 
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momenta in DD process [54] f or examplep + p -+ jet(klt) + jet(k2t x kit) + 
X + p(z~ + 1). At the moment not all properties of this process are clear, 
some refs. are [53] [54] [55]. Nevertheless we are able to claim: 

Diffractive dissociation processes give us 4 measurement 4 parton system 
confined in 4 small volume which can be treated theoretically in 4 selfconsistent 
way. 

6.5 Large Rapidity Gap (LRG) processes. 

Bjorken has suggested a new class of processes [56] that would allow us to enter 
the high density QCD region and check experimentally ideas on the Pomeron 
structure, shadowing corrections and the gluon density in a hadron. These are 
the processes with a large rapidity gap 6. 

To understand what is interesting about these processes let us consider a 

particular one: two gluon-jet production with rapidities y1 (~2) and transverse 
momenta kit (Iczt) respectively. The signature for LRG process is : 

1. Ay = 1 yr - y2 ] > (y), where (y) is the mean rapidity difference between 
two jets with the same value of transverse momenta ; 2. ] kit + k2t 1 = ]&,I 5 
M,,where (dt is th e mean transverse par-ton momentum in the parton cascade; 
3. no particles are produced with rapidities between yl and ~2. 

The cross section of the above process can be written in a form that is a 

straightforward generalization of eq.(18): 

dot A + 13 + Wtw, ht) + jethkst) + X + W’G’yl - ~2) 1 = 

d&&t 

S(YlV Y2) c / dxadxbd*katd*kbtd*k,t @a/Ah kxt) @b/&b, kv) 
ab 

I( XaXbs, kat, kbt, ht, k2t )6(*)( kat + kbt - kout ) . (55) 

We now expand on three main features of this equation 
1. The factor S(yl, ~2) is the so-called survival probability of the LRG. The 

physical meaning of it is very simple in the parton (QCD) language: it is the 
probability that there is no inelastic interaction between partons with z > x, 
from hadron A and partons with x > Xb from hadron B. Unfortunately, we need 
a much better understanding of so-called “soft” processes to calculate S(yl , ~2). 
However simple estimates in the eikonal model [56][58] show that S x 5 - 20%. 
Therefore LRG processes can be measured experimentally. Let us however issue 

“We note that the first LRG process was considered by Dokshitzer, Khoze and Sjostrand 
[57]. Bjorken generalized the approach and formulated it as a new tool to study “semihard” 
physics. 
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several warnings: i) in an eikonal approach S does not depend on y1 and y2 
and is merely a function of the collision energy. This is not correct in a more 
general approach. For example in deeply inelastic scattering where we know 
more about the structure of the parton cascade S turns out to be a complicated 
function of all variables: s, yl and y2 [59]; ii) the source of a LRG can be also 
the usual statistical fluctuation in a system of produced partons as well as 
produced hadrons in typical inelastic events without LRG. Such fluctuations 
lead to S oc emKAy where the value of n is strongly correlated with the model 
used for a typical inelastic event in a high energy hadron - hadron collision. 
Some attempts have been made to calculate n at the partonic level [60] but the 
only way to calculate this coefficient for the hadronization is to use a Monte 
Carlo model. In general IC oc p so for the parton cascade with a large density of 
partons K could be large enough to effectively suppress this possibility. 

2. The flavors a and b for jet production are predominantly gluons so this 
process gives us an unique possibility to measure directly the gluon density. 
Recall that in deeply inelastic processes for example we measure mainly the 
quark density since the photon interacts with a quark. Since the cross section 
for LRG jet production depends mostly on the square of the gluon density the 
LRG process can be a good tool to measure this density. 

3. The impact factor Z in the above formula is the most interesting object 
since the main contribution to it at high energy (X,X@ -+ co) is the exchange 
of a “hard” Pomeron. 

The proof of this statement can be found in [61] while the expression itself 
was first written in ref.[54]. The problem in the present understanding of the 
LRG processes is the fact that we do not know how large the energy for which 
this simple formula is valid should be. As was pointed out by Bjorken [56] 
the impact factor in Born approximation (two gluon exchange) gives an answer 
which is proportional to 

1 [“: dl* 
z&+F- 

hadron 
Therefore in Born approximation our Pomeron consists of one gluon with a 
virtuality of the order of large kf (i.e. its size is small, TG, x &) while the 

second gluon has a small virtuality (l*) and r& oc v. Thus the Pomeron 
is quite a large object in Born Approximation and cannot be considered a point 
like probe. as was assumed in eq. (55). 
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We would like to conclude that in spite of many yet unsolved theoretical 
problems, a LRG trigger can yield new insight into the Pomeron structure in 
the region where it is governed by perturbative &CD. We can summarize the 
main properties of LRG processes by: 

LRC processes are new probes of gluon densities at high energy and the 
Pomeron structure. The uvss section ‘of LRG processes should decrease expo- 
nentially for sufficiently small Ay, reach some plateau at intermediate Ay and 
rise exponentially at large values of Ay (a exp(wo(kt)Ay) N exp( QB(k~‘Nc . 
4ln2eAy) ). 

The 6rst DO measurement [62] encourages further detailed and careful ex- 
perimental study of such processes. 

6.6 Interaction with a nucleus. 

Here we investigate what the microscopic theory of QCD can tell us about 
interactions with a nucleus. In this subsection we try to answer two questions: 

l Why is a nucleus a better target for probing the high-density QCD region 
than a hadron? 

l How do the new phenomena in the high parton density region manifest 
themselves in ion-ion collisions? 

6.6.1 Why is a nucleus a better target? 

The short answer to this question is: perturbative QCD works better for the 
case of a nucleus. This can be argued as follows. 

First, the density of partons in the parton cascade of a fast nucleus is much 
larger than for a hadron because each nucleon is able to produce its own chain 
of partons. Consequently, in the case of a nuclear target one can reach the high 
density &CD region at smaller (reasonable) values of the energy. As we have 
discussed before we can apply perturbative QCD here since the typical partobn 
transverse momentum is sufhciently large. 

Secondly, the typical transverse momentum for partons is larger for the case 
of a nucleus than for the hadronic case. To clarify this statement let us consider 
the unitarity constraint for the parton density in a nucleus (see section 2.3). 
Unitarity tells us that 

a(7’A) < nRZ,. (56) 

For a nucleus RA a GOt,Af and in first approximation (when the cross 
section a(~*, N) is small) a(~*, A) = Aa(7*, N). Thus we can rewrite the 
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unitarity constraint of eq. (56) using the notation of eq. (26) as follows: 

WN 5 A-f (57) 

while for a nucleon WN < 1. 
Fig.11 shows that eq. (57) leads to an increase of the typical transverse 

momentum in nucleus par-ton cascade in comparison with the nucleon case 
(&$,A B ‘&N)* 

$N (‘0 &x) 
Figure 11: The dependance of W.V on Q* at fixed 2. 

As has been discussed in section 4.4, the typical parton momentum q&A 
plays two roles in a collision process: i) & is the maximal size of the con- 
stituents (partons) that can be differentiated in the parton cascade; ii) q&A is 
the Landau - Pomeranchuk momentum for the parton system after the first 
collision, where the coherence was destroyed. It means that due to the Landau- 
Pomeranchuk effect a parton with a smaller value of the transverse momentum 
cannot be produced. Finally we are able to conclude that the typical distances 
R in any nucleus reaction is smaller than & (R B: & < A). In other 
words the typical value of the QCD coupling constant (A,) for the case of the 
nucleus should be smaller than for hadron reactions (see ref.[40] for a more 
detailed discussion on this subject). 

In short: 

npical distances in the interaction with a nucleus are smaller than in in- 
teraction with a hadron, so that pQCD series should converge faster for the 
nuclear case than for the hadronic case. 
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6.6.2 How do the new phenomena anticipated in high density QCD 
manifest themselves in interactions with a nucleus? 

The basis of our approach is the nonlinear GLR equation for parton recom- 
bination in the parton cascade (section 4.1). In the caSe of a nucleus we can 
follow the same reasoning as in section 4.1 and obtain the equation for the 
gluon density in a nucleus. It has the form [63]: 

@~GA(T Q2) = QbN,xGA(x Q2) 9N,2 
i3in +rQ2 

1 lr - “‘2,N: -1jR2kG~(5'Q2)12 

9N,2 
2(N,2 - 1) 

T[zGA(~, Q2>12 , (58) 

where the first two terms describe the parton recombination in one nucleon 
while the third term diminishes the gluon density due to interaction between 
gluons from different nucleons in a nucleus. The coefficient T in eq. (58) is 
different in three different kinematic regions and it is equal to: 

T = 4nT(bt) = 87rpdm for X < XbOr 7 > j/m 

T = 4nT(bt): for 50 > z > Xb or &rot,,,, < 7 < Jgq 

T= 0 for 5 > so or 7 < GOton , (59) 

where T = l/mx is the life time of the virtual probe of the gluon density, Xb = 

,*; is the value of x for which the probe lives just long enough to cross 

the nucleus at impact parameter bt, whereas x0 is defined by l/mxo = Goton, 
m being the proton mass. The three regions correspond to the situation when 
the probe interacts with all nucleons in a nucleus, with a smaller number of 
nucleons (pr < T(bt)) and with the parton inside one nucleon, respectively. 

A remarkable property of this equation is the fact that the third term has 
no ambiguity (unlike the second terms which depends on the parameter R2) 
and all coefficients are well defined. The numerical solution of eq.(58) has been 
studied in ref. [64] where it has been shown that the solution to eq. (58) is 
able to describe the available experimental data. Thus this equation gives us 
a reliable basis for estimates of the influence of the parton recombination on 
different observables in hadron-ion and ion-ion collisions. As we have discussed 
in section 3 two approaches can be developed to multiparticle production in 
nuclear collisions: 

i) the first one is based on the factorization theorem. Its starting point 
is the expression for inclusive production (see eq.(7)) with which we are able 
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to calculate the inclusive cross section if we know the parton density. In this 
approach the master equation (58) provides the theoretical basis to perform such 
calculations. The calculated value of inclusive density of produced partons can 
be used to develop a Monte Carlo program to simulate a typical inelastic event. 

ii) the starting point of the second approach is the transport equation from 
section 3.4 for the spatial density of partons F(p, r, t) in real time. Here the 
kernel of the problem lies in the collision integral I and in the method of taking 
into account coherence effects in a medium. 

The master equation (58) and the hypothesis of parton density saturation 
yield a new strategy, namely to introduce the new scale of momentum f&A 
with the aim of treating processes with transverse momenta larger than f&A 
in perturbative QCD while treating processes with smaller transverse momenta 
with the parton density saturation assumption, and introducing the value of 
the maximal parton density (@&A) as a phenomenological parameter. 

This strategy has been realized only partly the various Monte - Carlo pro- 
grams for ion - ion and hadron - ion collisions that are on the market (see 
refs. [33] [34][65] ). All of them are based on the semi - hard approach which 
has been discussed in the above. They use the appearance of a new sufficiently 
large scale (qo) for the transverse momentum of partons and apply perturbative 
QCD to describe the major part of the total inclusive cross section. However 
none of them treat correctly the energy and A dependence of this new typical 
transverse momentum and the appearance of the limiting value of the gluon 
density. 

However these attempts are very instructive since they give the first numer- 
ical estimates for the probability of creating especially in ion-ion collisions a 
new aggregate phase of hadronic matter, the quark-ghon plasma at high en- 
ergy. The result of these calculations can be summarized by the statement 
that at RHIC or LHC energies we expect that an ion-ion collision proceeds in 
two stages: equilibrium of gluons after r~ x 1/2&n/c and production and 
equilibrium of quarks after a longer time TV x 2Fm/c (661. We think that 
the values of these characteristic times are rather premature since the num- 
ber of collisions has been overestimated in available calculations because the 
Landau-Pomeranchuk effect and the existence of the limiting parton density 
(both diminish number of produced partons) have not been taken into account 
properly. However the appearance of two stages in these processes as well as 
the large number of collisions arise very naturally in the semi-hard approach 
and we hope that we made this fact plausible. The second important lesson 
from these exercises is the fact that perturbative QCD is responsible for the 
preequilibrium stage so it means that sooner or later we be in a position to 
describe ion -ion collisions theoretically. 
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In short: 

The semi-hard approach or what we know theoretically about high density 
&CD allows us to develop a theoretical approach to ion-ion and ion-hadron 
collisions in which two stages appear naturally: gluon equilibrium after a short 
time and quark equilibrium after a much longer time. 

6.6.3 The factorization theorem in nuclear scattering. 

We would like to finish this short section on nucleus collisions by discussing 
the factorization theorem for nuclear collisions. Our statement is based on the 
physical meaning of q&A(x) as the Landau-Pomeranchuk momentum for a nu- 
cleus. Recall that the rescattering of partons inside the medium leads to a 
suppression of emission if the transverse momentum of the emitted parton, pt, 
is smaller than the Landau-Pomeranchuk momentum (PC < q(),A(XB)). There- 
fore for inclusive production of a jet with pt >> qO,A(Xg) one can use the 
usual factorization theorem and express the inclusive cross section through the 
product of parton densities. However when p+t < qe,A(Xg) the factorization 
theorem is no longer applicable. For transverse momenta that small we cannot 
use the language of the parton densities to calculate the inclusive cross section. 
Formally, this means that when ptjet N qe,A (ze) higher twist contributions be- 
come essential and thus the formal proof of the factorization theorem in [17] no 
longer applies. For such small transverse momenta we cannot use the language 
of the proton densities to calculate the inclusive cross section. In the region 
where ptjet is not too much larger than qfJ,A(Xg) we can use the transverse mo- 
mentum factorization approach, using parton densities, and taking into account 
screening corrections using the GLR equation. A more detailed discussion of 
this problem is beyond the scope of this review, but we would like to draw 
attention to this problem, which is often misunderstood, leading to either ne- 
glecting the LP effect for all p t+t, 
values pt& (e.g. [75]). 

or using the LP approach even for very large 

7 Conclusions. 

We can perhaps summarize the above by the following statements. 
l The new kinematic region of high density &CD is still wide open for 

theoretical and experimental investigation. 
l Perturbative QCD methods have been developed to explore the transition 

region between the region routinely analyzed by perturbative calculations for 
“hard” processes and the high density QCD one. 
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l It was shown that between the kinematic region of “soft” processes (key 
words: unitarity, analyticity, reggeons, Reggeon Calculus, hadronization models 
. ..) and the kinematical region of “hard” processes (key words: quarks, gluons, 
parton distributions, asymptotic freedom, pQCD, evolution equations . ..) there 
is the region of semi -hard processes where the cross sections can be so large 
as to be of the order of the geometrical size of the hadron but with a typical 
transverse momentum large enough that methods of perturbative QCD can be 
applied. 

l New probes for this high density QCD region have been developed. In 
spite of the fact that we still lack some theoretical understanding and the ability 
to provide reliable estimates for such probes we firmly believe that these probes 
give a deeper insight into QCD and could lead to new experimental discoveries. 

7.1 Phase transition. 

We can represent the predictions of the previous section as a phase transition 
between different forms of hadronic (partonic) matter. Our prediction can then 
be summarized as the possibility of a phase transition from a Quark - Gluon 
Ideal gas to a Gluon Liquid (see Fig.11). 

Indeed in the pQCD region (see Fig.5) we can regard a partonic system as 
an ideal gas of quarks and gluons since we can neglect their interactions (only 
emission being esssential here). 

Gluon Liquid VanderW& w,,,‘l 
WN’1 w 

aa CC 1 
g << I 

0, r 

Figure 12. The phase diagram for badroo-hadron collisions 
for rapidity 7 = 0 in the cm frame. Here y = Ins, r I Inpf 
and W.v is defined in eq.(26). 

When the density of partons increases we approach the region where we have 
to take into account the interactions between partons in a simple approximation 
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and in a situation where this interaction is not too big. This then is a Van der 
Waals gas of quarks and gluons. Here we have a theory based on a nonlinear 
evolution equation which plays the role of the Van der Waals equation for a 
parton system. 

For even larger values of the density we have a situation where the density 
is large but the value of coupling constant is still small. This smallness leads to 
a small correlation between partons. This is the reason we call this system 
of partons a Gluon Liquid. We recall that the density is high mostly due 
to emission of gluons and quarks inside this system can still be treated in a 
perturbative way. 

The borders between these different regions are the critical line we discussed 
in section 4.3 (between GL and VdWG) and the trajectory of the GLAP evolu- 
tion equation that touches the critical line (between VdWG and QGIG ). The 
asymptotics of these borders are also calculable. 

7.2 Where we stand. 

Let us summarize where we stand at the time of writing in the theoretical 
development of small x physics. 

l.In pQCD we are struggling with two major problems: i) our perturbative 
series have a naturally small parameter crd but its smallness is often compen- 
sated by large logarithms which are different in different processes. In the case 
of small x processes the real expansion parameter of the perturbation series is 
a,lnk which is not small. ii) the perturbative series is asymptotic since the 
coefficient C,, (see eq.(9) for example) behaves as n! at large n. 

The first problem is mainly technical and is solved by the BFKL equation 
[21]. However this equation suffers from two problems: the next order correc- 
tions have yet not been found while experience with calculating part of them 
shows that they are large [67]; also, this equation feels the as yet ununderstood 
confinement region. Moreover, such confinement corrections have not been lo- 
calized in something like a matrix element of some operator and the only way 
how we are able to treat them is to introduce by hand some momentum cutoff. 
Remarkable progress has been made recently by Mueller [68] who gave a very 
transparent derivation of the BFKL equation and constructed the parton wave 
function for the parton cascade in the region of small x. 

The second problem is very complicated and could be solved only if we 
understand better the nonperturbative origin (renormalons, instantons,...) of 
such a behavior of coefficient C,. Unfortunately even for the simplest case 
of the total cros section in e+e- annihilation this has not yet been done (see 
ref.[69]). We should mention that a first attempt has been made to calculate 
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the instanton contribution to the deep-inelastic structure function [70]. 
2. Progress in the understanding of shadowing corrections is intimately 

related to resummation of the perturbation series in the new small parameter 
W. The GLR equation is the result of such resummation. A recent development 
was the understanding that such a resummation in terms of the Wilson Operator 
Product Expantion implies that we have to take into account the high twist 
contributions. They must be important because the anomalous dimension of 
high twist operator turns out to be very large at small z, so large in fact that 
it can compensate the extra power of l/Q2 in the high twist contribution [71]. 
At the moment the anomalous dimension of twist four gluonic operator has 
been calculated [72] as well as the value of the anomalous dimensions of all 
higher twist operators within a specific approximation [71]. The corresponding 
generalization of the GLR equation has been discussed in section 4.5. 

3. The hope to develop a nonperturbative approach to the problem of small 
z is mostly connected with the attempt to write down an effective lagrangian 
for the region of small z. Implicitly one assumes that such a lagrangian should 
be simpler than the QCD one and should allow one to apply some numerical 
procedure (lattice calculation for example) to calculate scattering amplitudes 
with this lagrangian. It has so far been impossible to calculate actual amplitudes 
with the full QCD lagrangian. At the moment we have two effective theories 
on the market: one by Lipatov [73] which looks not much simpler that the full 
QCD one but incorporates all results of perturbative calculations, the second 
one is by Verlinde and Verlinde [74], and is much simpler and is also suited for 
lattice -like calculation but it has not yet been checked how well this effective 
theory describes perturbative results. 

We hope that these issues clearly illustrate how far removed we still are from 
the goal of obtaining an analytical solution of the problem of small z physics. 
Moreover, we hope that our review demonstrates how interesting and difficult 
the problem is. We did our best to excite the interest of theoretical theorists, 
practical theorists and experimentalists alike in the beauty and charm of high 
density QCD. 

Acknowledgements 
E. Levin would like to thank the Fermilab theory for hospitality. 

References 

[I] M. Gell-Mann, Phys. Lett. BS : 214 (1964); G. Zweig, CERN-Report- 
8182/TH - 401 (1964); CERN-Report-8419/TH-412 (1964). 

[2] O.W. Greenberg, Phys. Rev. Lett. 13 : 598 (1964). 

48 4 



[3] IS. Hughes, El enentaq ParticZes Cambridge: Cambridge University Press 
(1991). 

[4] C.N. Yang, R.L. Mills, Phys. Rev. 96: 191 ( 1954). 

[5] H. Fritzsch, M. Gell-Mann, H. Leutwyler, Phya. Lett. B47 : 365 (1973); 
D.J. Gross, F. Wilczek, Phya. Rev. DS : 3633 (1973); S. Weinberg, Phys. 
Rev. Lett. 31 : 494 (1973). 

[6] CTEQ Collaboration. Han&& of Pertvrbative &CD, ed. G. Sterman. Fer- 
milab preprint FERMILAB-PUB-93/094-T; G. Sterman, An Introdmtion 
to Quantum Field Theory Cambridge: Cambridge University Press (1993). 

[7] D.J. Gross, F. Wilczek, Phys. Rev. L&t. 30 : 1343 (1973); H.D. Politzer, 
Phya. Rev. Lett. 30 : 1346 (1973); G. ‘t Hooft, Phya. Lett. B61 : 455 
(1973); Phys. Lett. B62 : 444 (1973); I.B. Khriplovich, Yud. Fiz. 10 : 409 
(1969). 

[8] L.D. Landau, A.A. Abrikosov, I.M. Khalatnikov, Doklady Akad. Nauk 
USSR 95:773, 1177 (1954); Q&261 (1954); L.D. Landau, I. Pomeranchuk, 
Doklady Akad. Navlc USSR 102:488 (1955). 

[9] R.K. Ellis, in DPF92 Proceedings, ed: C.H. Albright, P.H. Kssper, R. Baja, 
J. Yoh. Singapore: World Scientific (1993). 

[lo] S. Catani, M. Ciafaloni, F. Hauptmann, Phya. Lett. B242 : 97 (1990); 
Nucl. Phya. B366 : 135 (1991); R.K. Ellis, D.A. Ross, Nucl. Phya. B45 
: 79 (1990); J.C. Collins, R.K. Ellis, Nuci. Phya. B360 : 3 (1991); E.M. 
Levin, M.G. Ryskin, Yu.M. Shabeisky, A.G. Shuvaev, Sov. J. Nzlcl. Phya. 
54 : 867 (1991). 

[ll] K. Charchula, E.M. L evin, in Proceedings of the Workshop “Physics at 
HERA “, ed. W. Buchmueller, G. Ingelman. Hamburg:DESY, volume 1:223 
(1991). 

[12] L.V. Gribov, Yu.L Dokshitzer, V.A. Khoze, S.I. Troyan, Sov. Phya. JETP 
88 : 1303 (1988). 

[13] S. Bethke, in Proceedings of the Workshop “&CD - 20 Years Later”. ed. 
P.M. Zexwas, H.A. Kastrup. Volume 1:43 (1992); B.R. Webber In Pro- 
ceedings of the Workshop “&CD - 20 Years Later”, ed. P.M. Zerwas, H.A. 
Kastrup. Volume 1:73 (1992). 

49 



[14] J.E. Huth, M.L. Mangano, Fermilab preprint FERMILAB - PUB-93/19-E. 
Ann. Rev. Nucl. Part. Sci. 43). In press. 

(151 P. Abreu, et al (DELPHI Collaboration). Phys. Lett. B255 : 466 (1991); 
D. Decamp, et al (ALEPH Collaboration). Phys. Lett. B284 : 151 (1992). 

(161 Yu.L. Dokshitzer, V.A. Khoze, A.H. Mueller, S.I. Troyan. Basics of Per- 
turbative &CD. Gif-sur-Yvette Cedex: Editions Frontieres (1992). 

[l?] J.C. C o 11 ins, D.E. Soper, G. Sternum. Nucl. Phys. B308 : 833 (1988); J.C. 
Collins, D.E. Soper, G. Sterman, in Perturbative Quontum Chromodynam- 
ica , ed. AH Mueller. Singapore: World Scientific (1989) and references 
therein. 

[18] A.S. Kronfeld, P.B. Mackenzie, Ann. Rev. Nucl. Part. Sci. 43 : 793 (1993). 

[19] M.A. Shifman, in Proceedings of the Workshop “&CD - 20 Years Later”, 
ed. P.M. Zerwas, H.A. Kastrup. Volume 2:775 (1992). 

(201 A. DeRoeck (Hl Collaboration), J. Phys. G19:1549 (1993); S.R. Mag- 
ill (ZEUS Collaboration), J. Phya. G19:1535 (1993); M. Besanson (Hl 
Collaboration), to appear in Proceedings of Blois Workshop on Elastic 
and Diflractive Scattering, Brown University, Providence, June 1993; M. 
Krzyzanowski (ZEUS Collaboration), to appear in Proceedings of Blois 
Workshop on Elastic and Diffractive Scattering, Brown University, Provi- 
dence, June 1993. 

[Zl] E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phya. JETP 45:199 (1977); 
Ya.Ya. Balitskii, L.N. Lipatov, Sov. J. Nucl. Phya. 28:822 (1978); L.N. 
Lipatov, Sov. Phys. JETP 63904 (1986). 

[22] V.N. Gribov, L.N. Lipatov, Sou. J. Nucl. Phys. 15:438 (1972); L.N. Lipa- 
tov, Yud. Fiz. 20:181 (1974); G. Altarelli, G. Parisi, Nucl. Phys. Bl26 : 
298 (1977); Yu.L. Dokshitzer, Sov.Phya. JETP 46:641 (1977). 

[23] L.V. Gribov, E.M. Levin, M.G. Ryskin, Phya.Rep. 1OO:l (1983). 

[24] A.H. M ue 11 er, Nucl. Phys. B335 : 115 (1990); Nzlcl. Phys. B317 : 573 
(1989); Nucl. Phya. B307 : 34(1988). 

[25] M. Ciafdoni, Nucl. Phya. B296 : 249 (1987); G. Marchesini, B. Webber, 
Nucl. Phya. B310 88 :435 (1988); S. Catani, F. Fiorani, G. Marchesini, 
Nucl. Phya. B336 : 18 (1990); S. Catani, F. Fiorani, G. Marchesini, G. 
Oriani G, Nucl. Phya. B ( Proc. Suppl.) 18C:30 (1990). 

50 



[26] G. Marchesini, in Proceedings of Erice Eloisatron Workshop in Perturbative 
&CD, ed. L. Cifarelli, Yu.L. Dokshitzer, Singapore: World Scientific. In 
press. 

[27] F. Abe, et al (CDF Collaboration), Phya. Rev. Lett. 68 : 1104 (1992); S. 
Ellis, Z. Kunszt, D.E. Soper, Phyq. Rev. Lett. 69 : 3615 (1992). 

[28] J.P. Blaizot, A.H. Mueller, Nucl. Phys. B289 : 847 (1987). 

[29] L. Landau, I. Pomeranchuk, DokZudy Akad. Nauk USSR 92:535 (1953); 
92:735 (1953); A.B. Migdal, Phys.Rev. 103: 1811 (1956); Sov. Phys. 
JETP 5 : 527 (1957). 

[30] S T. Stanev, Ch. Vankov, R.E. Streitmatter, R.W. Ellsworth, T. Bowen, 
Phya. Rev. D25 : 1291 (1982) and references therein. 

[31] M. Gyulassy, X-N. Wang, Lawrence Berkeley Laboratory preprint LBL- 
32682. 

[32] S. Klein, et al (SLAC E-146 Collaboration). SLAC preprint SLAC-PUB- 
6378. 

[33] K. Geiger, B. Mueller, Nucl. Phya. B369 : 600 (1911). 

[34] K. Geiger, Phys. Rev. D46 : 4986 (1992); Phya. Rev. D47 : 133 (1993); 
Phys. Rev. Lett. 70 : 1290 (1993); Phya. Rev. D48 : 4129 (1993); Phya. 
Rev. Lett. 71 3 075 (1993); K. Geiger, J.I. Kapusta, Phya. Rev. D47 : 
4995 (1993). 

[35] A.H. M ue 11 er, J. Qiu, Nucl. Phya. B268:427 (1986). 

[36] E. Levin, M. Wuesthoff, Fermilab preprint FERMILAB-PUB-92/334-T. 

[37] J. Bartels, M.G. Ryskin, DESY preprint DESY-93-081. 

[38] R.K. Ellis, W. Furmanski, R. Petronzio, NucZ. Phya. B207 : 1 (1982); 
Nucl. Phya. B212 : 29 (1983). 

[39] A. Donnachie, P.V. Landshoff, Nucl. Phya. B244 : 322 (1984); Nucl. 
Phya. B267 : 690 (1986); P.V. Landshoff, in Proc. of the LP - HEP’91 
Conference. Volume 2:363, Singapore: World Scientific (1992). 

[40] E.M. Levin, M.G. Ryskin, Phya. Rep. 189:267 (1990). 

(411 A.D. Martin, J. Phya. GlQ:1603 (1993) and references therein. 

51 



(421 A.J. Askew, J. Kwiecinski, A.D. Martin, P.J. Sutton PJ, Phys. Rev. D _ _ 
47:3775 (1993); J. Kwiecinski, J. Phys. G19:1443 (1993) and references 
therein. 

[43] V. Braun, M. Gomicki, L. Mankievicz, A. Shafer, Phya. Lett. B302 : 291 
(1993). 

[44] J.C. Collins, J. Kwiecinski, Nucl. Phys. B335 : 89 (1996). 

[45] J. Bartels, J. Blumlein, G. Schuler, 2. Phys. C50 : 91 (1991). 

[46] E. Levin, J. Phys. G19:1453 (1993) and references therein. 

[47] H. Abramowicz, E.M. Levin, A. Levy, U. Maor, Phya. Lett. B269 : 465 
(1991). 

[48] J.C. C o 11 ins, G.A. Ladinsky GA, Phya. Rev. D43 : 2847 (1991). 

[49] E.L. Feinberg, D.S. Chemavsky, Usp. Fiz. Navlc82:41 (1964); V.N. Gribov, 
Yad. Fiz. 9 : 640 (1969). 

[50] A.H. Mueller, H. Navelet, Nucl. Phya. B 282:727 (1987). 

[51] A.H. Mueller, Nucl. Phys. B (Proc. Suppl.) 18C:125 (1991); J. Bartels, A. 
De Roeck, M. Loewe, 2. Phya. C54 : 635 (1992); J. Kwiecinski, A.D. 
Martin, P.J. Sutton, Phya. Lett. B287 : 254 (1992); Phya. Rev. D46 : 
921 (1992); W-K. Tang, Phys. Lett. B278 : 363 (1991); J. Bartels, J. 
Phys. G19:1611 (1993); E. Laenen, E. Levin, J. Phya. G19:1582 (1993). 

[52] W.J. Stirling, Durham preprint DTP-94-04. 

[53] G. Ingelman, P.E. Schlein, Phya. Lett. B152 : 256 (1985); J. Bartels, G. 
Ingelman, Phys. Lett. B235 : 125 (1990); G. Ingelman, K. Janson-Prytz, 
Phys. Lett. B281 : 325 (1992). 

[54] L.L. Frankfurt, M. Strikman, Phya. Rev. Lett. 63 : 1914 (1989): M.G. 
Ryskin, Yad. Fiz. 50 : 1428 (1989); Sov. J. Nucl. Phya. 52 : 529 (1990); 
J.C. Collins, L.L. F’rankfurt, M. Strikman, Phys. Lett. B307 : 161 (1993). 

[55] N.N. N’k 1 I o am, B.G. Zakharov, Phya. Lett. B260 : 414 (1991); 2. Phys. 
C49 : 607 (1991); 2. Phya. C53 : 331 (1992), preprint KFA-IKP-1993 
-17; V. Barone, M. Genovese, N.N. Nikolaev, E. Predazzi, B.G. Zakharov, 
Phya. Lett. B268 : 279 (1991); Phya. Lett. B304 : 176 (1993); E. 
Levin, M. Wuesthoff, Fermilab preprint FERMILAB-PUB-92/334-T; M.G. 

52 



Ryskin, M. Besancon, in Proc. of the Workshop “Physics at HERA” ed. 
W. Buchmuller, G. Ingelman. Hamburg:DESY, volume 1:215 (1991). 

[56] J.D. Bjorken, Phys. Rev. D45 4 077 (1992); Phys. Rev. D47 : lOl(1992); 
Nucl.Phys. B (Proc. Suppl. 23C:250 (1992); Acta Phys. Pol. B 23~637 
(1992). 

[57] Yu.L. Dokshitzer, V.A. Khoze, T. Sjostrand, Phys. Lett. B274 : 116 
(1992). 

[58] E. Gotsman. E.M. Levin, U. Maor, Phys. Lett. B309 : 199 (1993). 

(591 E. Levin, Phys. Rev. D48 : 2097 (1993). 

[60] V. Del Duca, W-K. Tang, Phys. Lett. B312 2 25 (1993); V. Del Duca, 
DESY preprint DESY-93-135; SLAC preprint SLAC-PUB-6389. 

[61] A.H. Mueller, W-K. Tang, Phys. Lett. B284 : 123 (1992). 

[62] S. Feber, “Rapidity Gap Result from DO”, Ti.aZk at XXII International Sym- 
posium on Multiparticle Dynamics, Aspen,Colorado, 13 - 17 Sept. 1993. 

[63] E.M. Levin, M.G. Ryskin, Sow. J. Nucl. Phys. 41 : 300 (1985). 

[64] J. Qiu, Nucl. Phya. B291 : 746 (1987); K.J. Eskola, J. Qiu, X-N. Wang, 
Lawrence Berkeley Laboratory preprint LBL34156. 

[SS] J. Gomez, et al, SLAC preprint SLAC-PUB-5813(E). 

[66] E. Shuryak, Phys. Reo. Lett. 68 : 3278 (1992). 

[67] J. Kwiecinski, 2. Phys. C29 : 561 (1985); E.M. Levin, Orsay Lectures. 
Orsay preprint LPTHE91/02; M. Krawczyk, Nucl.Phys. B (Proc. Suppl.) 
18C:64 (1990); V.S. Fadin, L.N. Lipatov, Nucl. Phys. B406 2 59 (1993). 

[68] A.H. Mueller, Columbia preprint CU-TP-609. 

[69] A.H. Mueller AH, in Proceedings of the Workshop “&CD - 20 Years Later”, 
ed. P.M. Zerwas, H.A. Kastrup. Volume 1:162 (1992). 

[70] Ya. Ya. Balitsky, V.M. Braun, Nucl. Phys. B380 : 51 (1992); Phys. Lett. 
B314 : 237 (1992); Phys. Rev. D47 : 1879 (1993). 

[71] E. Laenen, E. Levin, A.G. Shuvaev, Fermilab preprint FERMILAB-PUB- 
93/243-T Nucl.Phys. B in press. 

53 = 



[72] J. Bartels, DESY preprint DESY-93-028; Phys. Lett. B298 : 204 (1993); 
E.M. Levin, M.G. Ryskin, A.G. Shuvaev, NudPhys. B 387:589 (1992). 

[73] L.N. Lipatov, Phys. Lett. B389 : 394 (1993); Phys. Lett. I3365 : 614 
(1991). 

[74] H. Verlinde, E. Verlinde, Princeton preprint PUPT-1319. 

[75] D. Kharzeev, H. Satz; 2. Phys. C60 : 389 (1993); CERN preprint CERN- 
TH-7115/93. 

54 


